
Windows PowerShell Cookbook™

Lee Holmes

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Windows PowerShell Cookbook™

by Lee Holmes

Copyright © 2008 Lee Holmes. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Laurel R.T. Ruma
Production Services: Tolman Creek Design

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

October 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Windows PowerShell Cookbook, the image of a box turtle, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-59652-849-3

ISBN-13: 978-0-596-652849-2

[M]

v

Table of Contents

Foreword . xvii

Preface . xxi

Part I. Tour

A Guided Tour of Windows PowerShell . 3
Introduction 3
An Interactive Shell 4
Structured Commands (Cmdlets) 6
Deep Integration of Objects 7
Administrators As First-Class Users 8
Composable Commands 9
Techniques to Protect You from Yourself 9
Common Discovery Commands 10
Ubiquitous Scripting 11
Ad Hoc Development 12
Bridging Technologies 12
Namespace Navigation Through Providers 14
Much, Much More 16

Part II. Fundamentals

1. The Windows PowerShell Interactive Shell . 19
1.0 Introduction 19
1.1 Run Programs, Scripts, and Existing Tools 19
1.2 Run a PowerShell Command 21

vi | Table of Contents

1.3 Customize Your Shell, Profile, and Prompt 22
1.4 Find a Command to Accomplish a Task 25
1.5 Get Help on a Command 26
1.6 Program: Search Help for Text 28
1.7 Invoke a PowerShell Script From Outside PowerShell 29
1.8 Program: Retain Changes to Environment Variables Set by a Batch File30
1.9 Get the System Date and Time 32

1.10 Determine the Status of the Last Command 33
1.11 Measure the Duration of a Command 34
1.12 Customize the Shell to Improve Your Productivity 35
1.13 Program: Learn Aliases for Common Commands 36
1.14 Access and Manage Your Console History 38
1.15 Store the Output of a Command into a File 39
1.16 Add Information to the End of a File 41
1.17 Record a Transcript of Your Shell Session 41
1.18 Display the Properties of an Item As a List 42
1.19 Display the Properties of an Item As a Table 42
1.20 Manage the Error Output of Commands 44
1.21 Configure Debug, Verbose, and Progress Output 45
1.22 Extend Your Shell with Additional Snapins 47
1.23 Use Console Files to Load and Save Sets of Snapins 48

2. Pipelines . 49
2.0 Introduction 49
2.1 Filter Items in a List or Command Output 50
2.2 Program: Simplify Most Where-Object Filters 51
2.3 Program: Interactively Filter Lists of Objects 52
2.4 Work with Each Item in a List or Command Output 54
2.5 Automate Data-Intensive Tasks 56

3. Variables and Objects . 61
3.0 Introduction 61
3.1 Store Information in Variables 62
3.2 Access Environment Variables 63
3.3 Control Access and Scope of Variables and Other Items 65
3.4 Work with .NET Objects 67
3.5 Create an Instance of a .NET Object 71
3.6 Program: Create Instances of Generic Objects 73
3.7 Reduce Typing for Long Class Names 74

Table of Contents | vii

3.8 Use a COM Object 76
3.9 Learn About Types and Objects 77

3.10 Get Detailed Documentation About Types and Objects 78
3.11 Add Custom Methods and Properties to Objects 80
3.12 Add Custom Methods and Properties to Types 82

4. Looping and Flow Control . 87
4.0 Introduction 87
4.1 Make Decisions with Comparison and Logical Operators 87
4.2 Adjust Script Flow Using Conditional Statements 89
4.3 Manage Large Conditional Statements with Switches 90
4.4 Repeat Operations with Loops 91
4.5 Add a Pause or Delay 93

5. Strings and Unstructured Text . 95
5.0 Introduction 95
5.1 Create a String 95
5.2 Create a Multiline or Formatted String 97
5.3 Place Special Characters in a String 98
5.4 Insert Dynamic Information in a String 99
5.5 Prevent a String from Including Dynamic Information 100
5.6 Place Formatted Information in a String 101
5.7 Search a String for Text or a Pattern 102
5.8 Replace Text in a String 105
5.9 Convert a String to Upper/Lowercase 106

5.10 Trim a String 107
5.11 Format a Date for Output 108
5.12 Program: Convert Text Streams to Objects 110
5.13 Generate Large Reports and Text Streams 114

6. Calculations and Math . 117
6.0 Introduction 117
6.1 Perform Simple Arithmetic 117
6.2 Perform Complex Arithmetic 119
6.3 Measure Statistical Properties of a List 121
6.4 Work with Numbers As Binary 123
6.5 Simplify Math with Administrative Constants 127
6.6 Convert Numbers Between Bases 128

viii | Table of Contents

Part III. Common Tasks

7. Simple Files . 133
7.0 Introduction 133
7.1 Get the Content of a File 133
7.2 Search a File for Text or a Pattern 135
7.3 Parse and Manage Text-Based Logfiles 136
7.4 Parse and Manage Binary Files 139
7.5 Create a Temporary File 141
7.6 Search and Replace Text in a File 143

8. Structured Files . 147
8.0 Introduction 147
8.1 Access Information in an XML File 147
8.2 Perform an XPath Query Against an XML File 150
8.3 Modify Data in an XML File 151
8.4 Easily Import and Export Your Structured Data 153
8.5 Store the Output of a Command in a CSV File 155
8.6 Import Structured Data from a CSV File 156
8.7 Use Excel to Manage Command Output 157

9. Internet-Enabled Scripts . 160
9.0 Introduction 160
9.1 Download a File from the Internet 160
9.2 Download a Web Page from the Internet 161
9.3 Program: Get-PageUrls 163
9.4 Program: Connect-WebService 166
9.5 Export Command Output As a Web Page 170
9.6 Program: Send an Email 170
9.7 Program: Interact with Internet Protocols 172

10. Code Reuse . 176
10.0 Introduction 176
10.1 Write a Script 176
10.2 Write a Function 179
10.3 Write a Script Block 180
10.4 Return Data from a Script, Function, or Script Block 182
10.5 Place Common Functions in a Library 184
10.6 Access Arguments of a Script, Function, or Script Block 185

Table of Contents | ix

10.7 Access Pipeline Input 188
10.8 Write Pipeline-Oriented Scripts with Cmdlet Keywords 189
10.9 Write a Pipeline-Oriented Function 193

11. Lists, Arrays, and Hashtables . 195
11.0 Introduction 195
11.1 Create an Array or List of Items 195
11.2 Create a Jagged or Multidimensional Array 197
11.3 Access Elements of an Array 198
11.4 Visit Each Element of an Array 199
11.5 Sort an Array or List of Items 200
11.6 Determine Whether an Array Contains an Item 200
11.7 Combine Two Arrays 201
11.8 Find Items in an Array That Match a Value 202
11.9 Remove Elements from an Array 203

11.10 Find Items in an Array Greater or Less Than a Value 204
11.11 Use the ArrayList Class for Advanced Array Tasks 205
11.12 Create a Hashtable or Associative Array 206
11.13 Sort a Hashtable by Key or Value 207

12. User Interaction . 209
12.0 Introduction 209
12.1 Read a Line of User Input 209
12.2 Read a Key of User Input 210
12.3 Program: Display a Menu to the User 211
12.4 Display Messages and Output to the User 213
12.5 Provide Progress Updates on Long-Running Tasks 216
12.6 Write Culture-Aware Scripts 217
12.7 Program: Invoke a Script Block with Alternate Culture Settings 220
12.8 Access Features of the Host’s User Interface 221
12.9 Program: Add a Graphical User Interface to Your Script 223

13. Tracing and Error Management . 226
13.0 Introduction 226
13.1 View the Errors Generated by a Command 226
13.2 Handle Warnings, Errors, and Terminating Errors 228
13.3 Output Warnings, Errors, and Terminating Errors 230
13.4 Debug a Script 231
13.5 Collect Detailed Traces of a Script or Command 234
13.6 Program: Analyze a Script’s Performance Profile 234

x | Table of Contents

14. Environmental Awareness . 240
14.0 Introduction 240
14.1 View and Modify Environment Variables 240
14.2 Access Information About Your Command’s Invocation 242
14.3 Program: Investigate the InvocationInfo Variable 244
14.4 Find Your Script’s Name 246
14.5 Find Your Script’s Location 247
14.6 Find the Location of Common System Paths 248
14.7 Program: Search the Windows Start Menu 250
14.8 Get the Current Location 252
14.9 Safely Build File Paths Out of Their Components 253

14.10 Interact with PowerShell’s Global Environment 254

15. Extend the Reach of Windows PowerShell . 255
15.0 Introduction 255
15.1 Access Windows Management Instrumentation Data 255
15.2 Program: Determine Properties Available to WMI Filters 257
15.3 Program: Search for WMI Classes 258
15.4 Use .NET to Perform Advanced WMI Tasks 261
15.5 Convert a VBScript WMI Script to PowerShell 263
15.6 Automate Programs Using COM Scripting Interfaces 266
15.7 Program: Query a SQL Data Source 267
15.8 Access Windows Performance Counters 270
15.9 Program: Invoke Native Windows API Calls 271

15.10 Program: Add Inline C# to Your PowerShell Script 273
15.11 Access a .NET SDK Library 276
15.12 Create Your Own PowerShell Cmdlet 279
15.13 Add PowerShell Scripting to Your Own Program 283

16. Security and Script Signing . 286
16.0 Introduction 286
16.1 Enable Scripting Through an Execution Policy 287
16.2 Sign a PowerShell Script or Formatting File 289
16.3 Program: Create a Self-Signed Certificate 291
16.4 Manage PowerShell Security in an Enterprise 292
16.5 Verify the Digital Signature of a PowerShell Script 295
16.6 Securely Handle Sensitive Information 296
16.7 Securely Request Usernames and Passwords 298
16.8 Program: Start a Process As Another User 300

Table of Contents | xi

16.9 Securely Store Credentials on Disk 301
16.10 Access User and Machine Certificates 303
16.11 Program: Search the Certificate Store 304

Part IV. Administrator Tasks

17. Files and Directories . 309
17.0 Introduction 309
17.1 Find All Files Modified Before a Certain Date 310
17.2 Clear or Remove a File 311
17.3 Manage and Change the Attributes of a File 312
17.4 Get the Files in a Directory 313
17.5 Find Files That Match a Pattern 314
17.6 Manage Files That Include Special Characters 317
17.7 Program: Get Disk Usage Information 318
17.8 Determine the Current Location 320
17.9 Monitor a File for Changes 321

17.10 Program: Get the MD5 or SHA1 Hash of a File 321
17.11 Create a Directory 324
17.12 Remove a File or Directory 324
17.13 Rename a File or Directory 325
17.14 Move a File or Directory 326
17.15 Get the ACL of a File or Directory 327
17.16 Set the ACL of a File or Directory 329
17.17 Program: Add Extended File Properties to Files 330
17.18 Program: Create a Filesystem Hard Link 332
17.19 Program: Create a ZIP Archive 334

18. The Windows Registry . 336
18.0 Introduction 336
18.1 Navigate the Registry 336
18.2 View a Registry Key 337
18.3 Modify or Remove a Registry Key Value 338
18.4 Create a Registry Key Value 339
18.5 Remove a Registry Key 340
18.6 Add a Site to an Internet Explorer Security Zone 341
18.7 Modify Internet Explorer Settings 343
18.8 Program: Search the Windows Registry 344

xii | Table of Contents

18.9 Get the ACL of a Registry Key 346
18.10 Set the ACL of a Registry Key 347
18.11 Work with the Registry of a Remote Computer 348
18.12 Program: Get Registry Items from Remote Machines 349
18.13 Program: Get Properties of Remote Registry Keys 351
18.14 Program: Set Properties of Remote Registry Keys 353
18.15 Discover Registry Settings for Programs 354

19. Comparing Data . 358
19.0 Introduction 358
19.1 Compare the Output of Two Commands 358
19.2 Determine the Differences Between Two Files 359
19.3 Verify Integrity of File Sets 360

20. Event Logs . 362
20.0 Introduction 362
20.1 List All Event Logs 362
20.2 Get the Newest Entries from an Event Log 363
20.3 Find Event Log Entries with Specific Text 364
20.4 Retrieve a Specific Event Log Entry 365
20.5 Find Event Log Entries by Their Frequency 367
20.6 Back Up an Event Log 369
20.7 Create or Remove an Event Log 369
20.8 Write to an Event Log 370
20.9 Access Event Logs of a Remote Machine 371

21. Processes . 373
21.0 Introduction 373
21.1 List Currently Running Processes 373
21.2 Launch a Process 375
21.3 Stop a Process 376
21.4 Program: Invoke a PowerShell Expression on a Remote Machine 377

22. System Services . 380
22.0 Introduction 380
22.1 List All Running Services 380
22.2 Manage a Running Service 382
22.3 Access Services on a Remote Machine 383

Table of Contents | xiii

23. Active Directory . 385
23.0 Introduction 385
23.1 Test Active Directory Scripts on a Local Installation 385
23.2 Create an Organizational Unit 388
23.3 Get the Properties of an Organizational Unit 388
23.4 Modify Properties of an Organizational Unit 389
23.5 Get the Children of an Active Directory Container 390
23.6 Create a User Account 390
23.7 Program: Import Users in Bulk to Active Directory 391
23.8 Search for a User Account 393
23.9 Get and List the Properties of a User Account 394

23.10 Modify Properties of a User Account 395
23.11 Create a Security or Distribution Group 395
23.12 Search for a Security or Distribution Group 396
23.13 Get the Properties of a Group 397
23.14 Find the Owner of a Group 398
23.15 Modify Properties of a Security or Distribution Group 399
23.16 Add a User to a Security or Distribution Group 399
23.17 Remove a User from a Security or Distribution Group 400
23.18 List a User’s Group Membership 400
23.19 List the Members of a Group 401
23.20 List the Users in an Organizational Unit 401
23.21 Search for a Computer Account 402
23.22 Get and List the Properties of a Computer Account 403

24. Enterprise Computer Management . 405
24.0 Introduction 405
24.1 Program: List Logon or Logoff Scripts for a User 405
24.2 Program: List Startup or Shutdown Scripts for a Machine 407
24.3 Enable or Disable the Windows Firewall 408
24.4 Open or Close Ports in the Windows Firewall 409
24.5 Program: List All Installed Software 410
24.6 Uninstall an Application 411
24.7 Manage Scheduled Tasks on a Computer 412
24.8 Retrieve Printer Information 413
24.9 Retrieve Printer Queue Statistics 414

24.10 Manage Printers and Print Queues 416
24.11 Determine Whether a Hotfix Is Installed 417
24.12 Program: Summarize System Information 419

xiv | Table of Contents

24.13 Renew a DHCP Lease 420
24.14 Assign a Static IP Address 421
24.15 List All IP Addresses for a Computer 423
24.16 List Network Adapter Properties 424

25. Manage an Exchange 2007 Server . 426
25.0 Introduction 426
25.1 Experiment with Exchange Management Shell 427
25.2 Automate Wizard-Guided Tasks 427
25.3 Manage Exchange Users 428
25.4 Manage Mailboxes 430
25.5 Manage Distribution Groups 431
25.6 Manage Transport Rules 431
25.7 Manage Outlook Web Access 432

26. Manage an Operations Manager 2007 Server . 434
26.0 Introduction 434
26.1 Experiment with the Command Shell 434
26.2 Manage Operations Manager Agents 435
26.3 Schedule a Maintenance Window 436
26.4 Get, Install, and Uninstall Management Packs 437
26.5 Enable or Disable Rules 438
26.6 List and Start Tasks 439
26.7 Manage Alerts 439

Part V. References

A. PowerShell Language and Environment . 443
Commands and Expressions 443
Comments 444
Variables 444
Booleans 446
Strings 446
Numbers 448
Arrays and Lists 449
Hashtables (Associative Arrays) 451
XML 452

Simple Operators 453

Table of Contents | xv

Comparison Operators 458
Conditional Statements 460
Looping Statements 464
Working with the .NET Framework 467
Writing Scripts, Reusing Functionality 473
Managing Errors 478
Formatting Output 480
Capturing Output 482
Tracing and Debugging 482
Common Customization Points 484

B. Regular Expression Reference . 488

C. PowerShell Automatic Variables . 496

D. Standard PowerShell Verbs . 499

E. Selected .NET Classes and Their Uses . 502

F. WMI Reference . 509

G. Selected COM Objects and Their Uses . 516

H. .NET String Formatting . 519
Standard Numeric Format Strings 519
Custom Numeric Format Strings 520

I. .NET DateTime Formatting . 522

Index . 529

xvii

Foreword1

When Lee asked me to write the foreword to his new book I was pleasantly sur-
prised. I was under the impression that forewords were written by people who were
respected and accomplished in their chosen field. Apparently, that isn’t the case at
all. My closest brush with accomplishment and respect came at a New Year’s cele-
bration long ago and involved hairspray and a butane lighter. I guess it doesn’t mat-
ter too much—I mean, who reads the foreword to a scripting book anyways, right?

Lee wanted one of the Microsoft Scripting Guys to write the foreword. He wrote this
book for the same hard-working admin scripters who frequent the TechNet Script
Center. Lee thought it would make sense to have an original member of that team
provide some perspective on where Windows admin scripting has been and where,
with Windows PowerShell, it is going.

A lot has happened since Lee and I first spoke about this. I’ve left the Microsoft
Scripting Guys team to work on the WMI SDK, and the Scripting Guys name has
become a bit of a joke given that the current driving force behind the team is a slight,
half-sandwich-eating lady named Jean Ross. For now, Jean is keeping Greg around
to do menial labor like packing up and shipping Dr. Scripto bobblehead dolls, but
we’ll just see what happens when he finally runs out of topics for his “Hey, Scripting
Guy” column. The future of scripting could very well be The Scripting Girl.

Glue, Enablers, and a WSH
Whenever I think “perspective” and “scripting”—which is far too often—I think Bob
Wells. Bob takes his scripting very seriously and has been promoting it inside and
outside of Microsoft for years. When I joined the Scripting Guys team, Bob would
preach to me about “glue” and “enablers.” It took some time before I understood
why he was talking about it so often and why finding just the right term for enablers
was so important to him. I now know that it’s because crisply defining these two
concepts establishes a simple, useful framework in which to think about admin
scripting. The glue part is the scripting language itself—the foreachs, ifs, and vars.

xviii | Foreword

It’s what you use to orchestrate, or glue together, the set of subtasks you need to do
to complete a larger task. The enablers (and, no, we never came up with a better
term for them) are the instruments that actually accomplish each of the subtasks.

This table lists the glue and enablers that we, as Windows scripters, have had avail-
able to us over the years.

Notice how each new environment lets you work with the enablers of the previous
environment. This is important because it lets you carry forward your hard-earned
knowledge. Objectively, we can say that WSH scripting is more powerful than batch
scripting because it provides access to more enablers. You can automate more tasks
because you have access to the additional functionality exposed by automatable
COM objects. Less objectively, you could argue that even if you’re only going to use
command-line tools as enablers, WSH is a better choice than batch because it pro-
vides some really useful glue functionality; advances in available enablers make more
things possible while advances in glue (sometimes) make things more convenient.

WSH scripting is a pretty capable environment. The WMI and ADSI COM libraries
alone provide admins around the world with countless cycles of pain and elation.
But there’s always that pesky task that you just can’t do with WSH, or that requires
you to download some tool from some strangely named web site at 2 a.m. when you
really shouldn’t be making decisions about what to install on your production serv-
ers. If only VBScript included the infamous Win32 API among its enablers, then, like
those strange creatures known as developers, you could do anything.

Well, in developer land these days, the .NET Framework Class Library (FCL) is the
new Win32 API. So, what we really need is a scripting environment that includes the
FCL as an enabler. That’s exactly what Windows PowerShell does. In fact, Win-
dows PowerShell runs in the same environment as that library and, as a result, works
seamlessly with it. I read a lot of press about the object-pipelining capabilities of
Windows PowerShell. Those capabilities are very cool and represent an excellent
advance in the glue department—an advance that certainly makes working with the
FCL more natural. But the addition of the FCL as an enabler is the thing that makes
Jeffrey et al.’s creation objectively more powerful than WSH. And even if you don’t
run into anything in the FCL that you need right away, it’s comforting to know that
when you make an investment and develop expertise in this latest environment, you

Glue Enabler

Cmd.exe batch language Command-line tools (OS, ResKit, Support Tools)

WSH Command-line tools (OS, ResKit, Support Tools)

Automation-enabled COM objects (WMI, ADSI)

Windows PowerShell Command-line tools (OS, ResKit, Support Tools

Automation-enabled COM objects (WMI, ADSI)

.NET Framework Class Library

Foreword | xix

gain access to all the enablers that your developer counterparts currently have or will
have in the foreseeable future. It should also be comforting to know that if you spend
the time to learn Windows PowerShell, that knowledge should last you as long as the
.NET Framework lasts Microsoft.

Windows PowerShell follows in the tradition of WSH by improving on the glue
aspect of its predecessor. One of the real pain points of working with COM objects
in WSH was finding out what properties and methods were available. Unless you
shelled out the bucks for a smart editor, you lost a lot of productivity context switch-
ing from writing a script and consulting documentation. Not so when working with
objects in Windows PowerShell. Type this at a Windows PowerShell prompt:

$objShell = New-Object –com Shell.Application
$objShell | Get-Member

It does a scripter good, does it not?

That Lee Guy
Hopefully my rambling has convinced you that Windows PowerShell is a good thing
and that it’s worth your time to learn it. Now, why do I think you should learn it by
buying and reading this book?

First off, I should tell you that the Windows PowerShell team is a bunch of odd
ducks.* These folks are obsessed. From Jeffrey Snover on down, they are incredible
teachers who love and believe in their technology so much that it’s difficult to stop
them from teaching you! Even among that bunch of quackers, Lee stands out. Have
you ever heard the sound an Exchange server makes when it cringes? Well, ours
cringe when Lee comes to work and starts answering questions on our internal Win-
dows PowerShell mailing list. Lee has amassed unique knowledge about how to
leverage Windows PowerShell to address problems that arise in the real world. And
he and O’Reilly have done us a great service by capturing and sharing some of that
knowledge in this book.

Windows system admin scripters are the coolest people on the planet. It continues to
be a pleasure to work for you and I sincerely hope you enjoy the book.

—Dean Tsaltas
Microsoft Scripting Guy Emeritus

* Canadian ducks (Canuck ducks) in many cases.

xxi

Preface2

In late 2002, Slashdot posted a story about a “next generation shell” rumored to be
in development at Microsoft. As a longtime fan of the power unlocked by shells and
their scripting languages, the post immediately captured my interest. Could this shell
possibly provide the command-line power and productivity that I’d long loved on
Unix systems?

Since I had just joined Microsoft six months earlier, I jumped at the chance to finally
get to the bottom of a Slashdot-sourced Microsoft Mystery. The post talked about
strong integration with the .NET Framework, so I posted a query to an internal C#
mailing list. I got a response that the project was called “Monad,” which I then used
to track down an internal prototype build.

Prototype was a generous term. In its early stages, the build was primarily a proof of
concept. Want to clear the screen? No problem! Just lean on the Enter key until
your previous commands and output scroll out of view! But even at these early
stages, it was immediately clear that Monad marked a revolution in command-line
shells. As with many things of this magnitude, its beauty was self-evident. Monad
passed full-fidelity .NET objects between its commands. For even the most com-
plex commands, Monad abolished the (until now, standard) need for fragile text-
based parsing. Simple and powerful data manipulation tools supported this new
model, creating a shell both powerful, and easy to use.

I joined the Monad development team shortly after that to help do my part to bring
this masterpiece of technology to the rest of the world. Since then, Monad has grown
to become a real, tangible, product—now called Windows PowerShell.

So why write a book about it? And why this book?

Many users have picked up (and will continue to pick up) PowerShell for the sake of
learning PowerShell. Any tangible benefits come by way of side effect. For others,
though, you might prefer to opportunistically learn a new technology as it solves
your needs. How do you use PowerShell to navigate the filesystem? How can you
manage files and folders? Retrieve a web page?

xxii | Preface

This book focuses squarely on helping you learn PowerShell through task-based
solutions to your most pressing problems. Read a recipe, read a chapter, or read the
entire book—either way, you’re bound to learn something.

Who This Book Is For
This book helps you use PowerShell to get things done. It contains hundreds of solu-
tions to specific, real-world problems. For systems management, you’ll find plenty
examples that show how to manage the filesystem, Windows Registry, event logs,
processes, and more. For enterprise administration, you’ll find two entire chapters
devoted to WMI, Active Directory, and other enterprise-focused tasks.

For administrators of Exchange 2007 or Operations Manager 2007 (MOM), you’ll
find a chapter devoted to each that covers the getting started information and top
tasks for those groundbreaking new products.

Along the way, you’ll also learn an enormous amount about PowerShell: its fea-
tures, its commands, and its scripting language—but you’ll most importantly solve
problems.

How This Book Is Organized
This book consists of five main sections: a guided tour of PowerShell, PowerShell
fundamentals, common tasks, administrator tasks, and a detailed reference.

Part 1: Tour
A Guided Tour of Windows PowerShell breezes through PowerShell at a high level. It
introduces PowerShell’s core features:

• An interactive shell

• A new command model

• An object-based pipeline

• A razor-sharp focus on administrators

• A consistent model for learning and discovery

• Ubiquitous scripting

• Integration with critical management technologies

• A consistent model for interacting with data stores

The guided tour lets you orient yourself and become familiar with PowerShell as a
whole. This familiarity helps create a mental framework for you to understand the
details and solutions from the rest of the book.

Preface | xxiii

Part 2: Fundamentals
Chapters 1 through 6 cover the PowerShell fundamentals that underpin many of the
solutions used throughout the book. The solutions in this section introduce you to
the PowerShell interactive shell, fundamental pipeline and object concepts, and
many features of the PowerShell scripting language.

Part 3: Common Tasks
Chapters 7 through 16 cover the tasks you will run into most commonly when start-
ing to tackle more complex problems in PowerShell. This includes working with sim-
ple and structured files, Internet-connected scripts, code reuse, user interaction, and
more.

Part 4: Administrator Tasks
Chapters 17 through 26 focus on the most common tasks in systems and enterprise
management. Chapters 17 through 22 focus on individual systems: the filesystem,
registry, event logs, processes, services, and more. Chapters 23 and 24 focus on
Active Directory, as well as the typical tasks most common in managing networked
or domain-joined systems.

Chapters 25 and 26 are devoted to managing Exchange 2007 and Operations Man-
ager 2007 (MOM), respectively.

Part 5: References
Many books belch useless information into their appendix simply to increase page
count. In this book, however, the detailed reference underpins an integral and essen-
tial resource for learning and using PowerShell. It covers:

• The PowerShell language and environment

• Regular expression syntax and PowerShell-focused examples

• PowerShell’s automatic and default variables

• PowerShell’s standard verbs

• Administrator-friendly .NET classes and their uses

• Administrator-friendly WMI classes and their uses

• Administrator-friendly COM objects and their uses

• .NET string formatting syntax and PowerShell-focused examples

• .NET DateTime formatting syntax and PowerShell-focused examples

xxiv | Preface

What You Need to Use This Book
The majority of this book requires only a working installation of Windows Power-
Shell. If you do not yet have PowerShell installed, you may obtain it by following the
download link at http://www.microsoft.com/PowerShell. This link provides download
instructions for PowerShell on Windows XP, Windows Server 2003, and Windows
Vista. For Windows Server 2008, PowerShell comes installed as an optional compo-
nent that you can enable through the Control Panel like other optional components.

The Active Directory scripts given in “Active Directory” are most useful when
applied to an enterprise environment, but Recipe 23.1, “Test Active Directory Scripts
on a Local Installation” shows how to install additional software (Active Directory
Application Mode) that lets you run these scripts against a local installation.

Chapters 26 and 27 require that you have access to an Exchange or Operations Man-
ager 2007 environment. If you do not have access to these environments, Recipe 25.1,
“Experiment with Exchange Management Shell” and Recipe 26.1, “Experiment with
the Command Shell” show you how to use Microsoft Virtual Labs for Exchange and
Operations Manager as a viable alternative.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl)

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

Preface | xxv

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Code Examples

Obtaining Code Examples
To obtain electronic versions of the programs and examples given in this book, visit
the Examples link at:

http://www.oreilly.com/catalog/9780596528492

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Windows PowerShell Cookbook by
Lee Holmes. Copyright 2007 Lee Holmes, 978-0-596-52849-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xxvi | Preface

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596528492

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
“I do not like writing, but I do like having written.”

—William Zinsser
On Writing Well

Writing is the task of crafting icebergs. The heft of the book you hold in your hands
is just a hint of the effort it took to get it there—by a cast much larger than me.

The groundwork started decades ago. My parents nurtured my interest in computers
and software, supported an evening-only bulletin board service, put up with
“viruses” that told them to buy a new computer for Christmas, and even listened to
me blather about batch files or how PowerShell compares to Excel. Without their
support, who knows where I’d be.

My family and friends helped keep me sane for the past year. Ariel: you are the light
of my life. Robin: thinking of you reminds me each day that serendipity is still alive
and well in this busy world. Thank you to all of my friends and family for being there
for me. You can have me back now. :)

I would not have written this book without the tremendous influence of Guy Allen,
visionary of University of Toronto’s Professional Writing program. Guy: your men-
toring forever changed me, just as it molds thousands of others from English hackers
into writers.

Of course, members of the PowerShell team (both new and old) are the ones that
made this a book about PowerShell. Building this product with you has been a
unique challenge and experience—but most of all, a distinct pleasure. In addition to
the PowerShell team, the entire PowerShell community defined this book’s focus.
From MVPs, to early adopters, to newsgroup lurkers: your support, questions, and
feedback have been the inspiration behind each page.

Converting thoughts into print always involves a cast of unsung heroes, even though
each author tries their best to convince the world how important these heroes are.

Preface | xxvii

Thank you to my technical reviewers: Christina Lemaire, Dean Tsaltas, Debbie Tim-
mins, James Manning, Jeffrey Tadlock, June Blender, Markus Lindemann, Michael
Dragone, and Michael Howard. I truly appreciate you donating your nights and
weekends to help craft something of which we can all be proud.

To the awesome staff at O’Reilly—John Osborn, Laurel Ruma, Kyley Caldwell, and
the production team—your patience and persistence helped craft a book that holds
true to its original vision. It also ensured that the book didn’t just knock around in
my head, but actually got out the door.

This book would not be possible without the support from each and every one of you.

PART I

I.Tour

A Guided Tour of Windows PowerShell

3

0 TOUR

A Guided Tour of Windows PowerShell1

Introduction
Windows PowerShell promises to revolutionize the world of system management
and command-line shells. From its object-based pipelines, to its administrator focus,
to its enormous reach into other Microsoft management technologies, PowerShell
drastically improves the productivity of administrators and power-users alike.

When learning a new technology, it is natural to feel bewildered at first by all the
unfamiliar features and functionality. This perhaps rings especially true for users new
to Windows PowerShell, because it may be their first experience with a fully fea-
tured command-line shell. Or worse, they've heard stories of PowerShell’s fantastic
integrated scripting capabilities and fear being forced into a world of programming
that they’ve actively avoided until now.

Fortunately, these fears are entirely misguided: PowerShell is a shell that both grows
with you and grows on you. Let’s take a tour to see what it is capable of:

• PowerShell works with standard Windows commands and applications. You
don’t have to throw away what you already know and use.

• PowerShell introduces a powerful new type of command. PowerShell com-
mands (called cmdlets) share a common Verb-Noun syntax and offer many usabil-
ity improvements over standard commands.

• PowerShell understands objects. Working directly with richly structured objects
makes working with (and combining) PowerShell commands immensely easier
than working in the plain-text world of traditional shells.

• PowerShell caters to administrators. Even with all its advances, PowerShell
focuses strongly on its use as an interactive shell: the experience of entering com-
mands in a running PowerShell application.

• PowerShell supports discovery. Using three simple commands, you can learn
and discover almost anything PowerShell has to offer.

4 | A Guided Tour of Windows PowerShell

• PowerShell enables ubiquitous scripting. With a fully fledged scripting language
that works directly from the command line, PowerShell lets you automate tasks
with ease.

• PowerShell bridges many technologies. By letting you work with .NET, COM,
WMI, XML, and Active Directory, PowerShell makes working with these previ-
ously isolated technologies easier than ever before.

• PowerShell simplifies management of data stores. Through its provider model,
PowerShell lets you manage data stores using the same techniques you already
use to manage files and folders.

We’ll explore each of these pillars in this introductory tour of PowerShell.

An Interactive Shell
At its core, PowerShell is first and foremost an interactive shell. While it supports
scripting and other powerful features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching PowerShell.exe rather
than cmd.exe—the shells begin to diverge as you explore the intermediate and
advanced functionality, but you can be productive in PowerShell immediately.

To launch Windows PowerShell

Click Start ➝ All Programs ➝ Windows PowerShell 1.0 ➝ Windows PowerShell

or alternatively,

Click Start ➝ Run, and then type “PowerShell”.

A PowerShell prompt window opens that’s nearly identical to the traditional com-
mand prompt window of Windows XP, Windows Server 2003, and their many
ancestors. The PS C:\Documents and Settings\Lee> prompt indicates that Power-
Shell is ready for input, as shown in Figure T-1.

Once you’ve launched your PowerShell prompt, you can enter DOS-style and Unix-
style commands for navigating around the filesystem just as you would with any
Windows or Unix command prompt—as in the interactive session shown in
Example T-1.

An Interactive Shell | 5

Figure T-1. Windows PowerShell, ready for input

Example T-1. Entering many standard DOS and UNIX-style file manipulation commands produces
the same results you get when you use them with any other Windows shell

PS C:\Documents and Settings\Lee> function Prompt { "PS >" }
PS >pushd .
PS >cd \
PS >dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark
d---- 11/29/2006 2:47 PM Boot
d---- 11/28/2006 2:10 PM DECCHECK
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo
d---- 4/2/2007 7:21 PM Inetpub
d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 7:26 PM temp
d---- 5/21/2007 8:55 PM Windows
-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys
-a--- 5/1/2007 8:43 PM 33057 RUU.log
-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

PS >popd

6 | A Guided Tour of Windows PowerShell

As shown in Example T-1, you can use the pushd, cd, dir, pwd, and popd commands
to store the current location, navigate around the filesystem, list items in the current
directory, and then return to your original location. Try it!

The pushd command is an alternative name (alias) to the much more
descriptively named PowerShell command, Push-Location. Likewise,
the cd, dir, popd, and pwd commands all have more memorable coun-
terparts.

Although navigating around the filesystem is helpful, so is running the tools you
know and love, such as ipconfig and notepad. Type the command name and you’ll
see results like those shown in Example T-2.

Entering ipconfig displays the IP addresses of your current network connections.
Entering notepad runs—as you’d expect—the Notepad editor that ships with Win-
dows. Try them both on your own machine.

Structured Commands (Cmdlets)
In addition to supporting traditional Windows executables, PowerShell introduces a
powerful new type of command called a cmdlet (pronounced command-let). All
cmdlets are named in a Verb-Noun pattern, such as Get-Process, Get-Content, and
Stop-Process.

PS >pwd

Path

C:\Documents and Settings\Lee

Example T-2. Windows tools and applications such as ipconfig run in PowerShell just as they do in
the cmd.exe

PS >ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

 Connection-specific DNS Suffix . : hsd1.wa.comcast.net.
 IP Address. : 192.168.1.100
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1
PS >notepad
(notepad launches)

Example T-1. Entering many standard DOS and UNIX-style file manipulation commands produces
the same results you get when you use them with any other Windows shell (continued)

Deep Integration of Objects | 7

PS >Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific
process by name.

Once you know the handful of common verbs in PowerShell, learning
how to work with new nouns becomes much easier. While you may
never have worked with a certain object before (such as a Service), the
standard Get, Set, Start, and Stop actions still apply. For a list of these
common verbs, see Table D-1.

You don’t always have to type these full cmdlet names, however. PowerShell lets you
use the Tab key to auto-complete cmdlet names and parameter names:

PS >Get-Pr<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To help improve your
efficiency, PowerShell defines aliases for all common commands and lets you define
your own. In addition to alias names, PowerShell only requires that you type enough
of the parameter name to disambiguate it from the rest of the parameters in that
cmdlet. PowerShell is also case-insensitive. Using the built-in gps alias (that repre-
sents the Get-Process cmdlet) along with parameter shortening, you can instead
type:

PS >gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Posi-
tional parameters let you provide parameter values in a certain position on the com-
mand line, rather than having to specify them by name. The Get-Process cmdlet
takes a process name as its first positional parameter. This parameter even supports
wildcards:

PS >gps l*s

Deep Integration of Objects
PowerShell begins to flex more of its muscle as you explore the way it handles struc-
tured data and richly functional objects. For example, the following command gener-
ates a simple text string. Since nothing captures that output, PowerShell displays it to
you:

PS >"Hello World"
Hello World

The string you just generated is, in fact, a fully functional object from the .NET
Framework. For example, you can access its Length property, which tells you how

8 | A Guided Tour of Windows PowerShell

many characters are in the string. To access a property, you place a dot between the
object and its property name:

PS >"Hello World".Length
11

All PowerShell commands that produce output generate that output as objects, as
well. For example, the Get-Process cmdlet generates a System.Diagnostics.Process
object, which you can store in a variable. In PowerShell, variable names start with a $
character. If you have an instance of Notepad running, the following command stores
a reference to it:

$process = Get-Process notepad

Since this is a fully functional Process object from the .NET Framework, you can call
methods on that object to perform actions on it. This command calls the Kill()
method, which stops a process. To access a method, you place a dot between the
object and its method name:

$process.Kill()

PowerShell supports this functionality more directly through the Stop-Process
cmdlet, but this example demonstrates an important point about your ability to
interact with these rich objects.

Administrators As First-Class Users
While PowerShell’s support for objects from the .NET Framework quickens the
pulse of most users, PowerShell continues to focus strongly on administrative tasks.
For example, PowerShell supports MB (for megabyte) and GB (for gigabyte) as some of
the standard administrative constants. For example, how many disks will it take to
back up a 40GB hard drive to CD-ROM?

PS >40GB / 650MB
63.0153846153846

Just because PowerShell is an administrator-focused shell doesn’t mean you can’t
still use the .NET Framework for administrative tasks though! In fact, PowerShell
makes a great calendar. For example, is 2008 a leap year? PowerShell can tell you:

PS >[DateTime]::IsLeapYear(2008)
True

Going further, how might you determine how much time remains until summer? The
following command converts "06/21/2008" (the start of summer) to a date, and then
subtracts the current date from that. It stores the result in the $result variable, and
then accesses the TotalDays property.

PS >$result = [DateTime] "06/21/2008" - [DateTime]::Now
PS >$result.TotalDays
283.0549285662616

Techniques to Protect You from Yourself | 9

Composable Commands
Whenever a command generates output, you can use a pipeline character (|) to pass
that output directly to another command as input. If the second command under-
stands the objects produced by the first command, it can operate on the results. You
can chain together many commands this way, creating powerful compositions out of
a few simple operations. For example, the following command gets all items in the
Path1 directory and moves them to the Path2 directory:

Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the
pipeline. In Example T-3, the first command gets all processes running on the sys-
tem. It passes those to the Where-Object cmdlet, which runs a comparison against
each incoming item. In this case, the comparison is $_.Handles -ge 500, which
checks whether the Handles property of the current object (represented by the $_
variable) is greater than or equal to 500. For each object in which this comparison
holds true, you pass the results to the Sort-Object cmdlet, asking it to sort items by
their Handles property. Finally, you pass the objects to the Format-Table cmdlet to
generate a table that contains the Handles, Name, and Description of the process.

Techniques to Protect You from Yourself
While aliases, wildcards, and composable pipelines are powerful, their use in com-
mands that modify system information can easily be nerve-wracking. After all, what
does this command do? Think about it, but don't try it just yet:

PS >gps [b-t]*[c-r] | Stop-Process

Example T-3. You can build more complex PowerShell commands by using pipelines to link cmdlets,
as shown in this example with Get-Process, Where-Object, Sort-Object, and Format-Table

PS >Get-Process |
>> Where-Object { $_.Handles -ge 500 } |
>> Sort-Object Handles |
>> Format-Table Handles,Name,Description -Auto
>>

Handles Name Description
------- ---- -----------
 588 winlogon
 592 svchost
 667 lsass
 725 csrss
 742 System
 964 WINWORD Microsoft Office Word
 1112 OUTLOOK Microsoft Office Outlook
 2063 svchost

10 | A Guided Tour of Windows PowerShell

It appears to stop all processes that begin with the letters b through t and end with
the letters c through r. How can you be sure? Let PowerShell tell you. For com-
mands that modify data, PowerShell supports –WhatIf and –Confirm parameters that
let you see what a command would do:

PS >gps [b-t]*[c-r] | Stop-Process -whatif
What if: Performing operation "Stop-Process" on Target "ctfmon (812)".
What if: Performing operation "Stop-Process" on Target "Ditto (1916)".
What if: Performing operation "Stop-Process" on Target "dsamain (316)".
What if: Performing operation "Stop-Process" on Target "ehrecvr (1832)".
What if: Performing operation "Stop-Process" on Target "ehSched (1852)".
What if: Performing operation "Stop-Process" on Target "EXCEL (2092)".
What if: Performing operation "Stop-Process" on Target "explorer (1900)".
(...)

In this interaction, using the –whatif parameter with the Stop-Process pipelined
command lets you preview which processes on your system will be stopped before
you actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on Vista, it forced a shutdown with only one
minute warning!

It was very funny though… At least I had enough time to save everything first!

Common Discovery Commands
While reading through a guided tour is helpful, I find that most learning happens in
an ad hoc fashion. To find all commands that match a given wildcard, use the Get-
Command cmdlet. For example, by entering the following, you can find out which Pow-
erShell commands (and Windows applications) contain the word process.

PS >Get-Command *process*

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Process Get-Process [[-Name] <Str...
Application qprocess.exe c:\windows\system32\qproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-Help cmdlet, like this:

PS >Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides
the Get-Member cmdlet to retrieve information about the properties and methods that
an object, such as a .NET System.String, supports. Piping a string to the Get-Member
command displays its type name and its members:

Ubiquitous Scripting | 11

PS >"Hello World" | Get-Member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
(...)
PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
ToLower Method System.String ToLower(), System....
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String TrimEnd(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Chars ParameterizedProperty System.Char Chars(Int32 index) {...
Length Property System.Int32 Length {get;}

Ubiquitous Scripting
PowerShell makes no distinction between the commands typed at the command line
and the commands written in a script. Your favorite cmdlets work in scripts and your
favorite scripting techniques (e.g., the foreach statement) work directly on the com-
mand line. For example, to add up the handle count for all running processes:

PS >$handleCount = 0
PS >foreach($process in Get-Process) { $handleCount += $process.Handles }
PS >$handleCount
19403

While PowerShell provides a command (Measure-Object) to measure statistics about
collections, this short example shows how PowerShell lets you apply techniques that
normally require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can also create and work
directly with objects from the .NET Framework. PowerShell becomes almost like the
C# immediate mode in Visual Studio. Example T-4 shows how PowerShell lets you
easily interact with the .NET Framework.

Example T-4. Using objects from the .NET Framework to retrieve a web page and process its content

PS >$webClient = New-Object System.Net.WebClient
PS >$content = $webClient.DownloadString("http://blogs.msdn.com/PowerShell/rss.aspx")
PS >$content.Substring(0,1000)

12 | A Guided Tour of Windows PowerShell

Ad Hoc Development
By blurring the lines between interactive administration and writing scripts, the his-
tory buffer of PowerShell sessions quickly become the basis for ad-hoc script devel-
opment. In this example, you call the Get-History cmdlet to retrieve the history of
your session. For each of those items, you get its CommandLine property (the thing you
typed) and send the output to a new script file.

PS >Get-History | Foreach-Object { $_.CommandLine } > c:\temp\script.ps1
PS >notepad c:\temp\script.ps1
(save the content you want to keep)
PS >c:\temp\script.ps1

If this is the first time you've run a script in PowerShell, you will need
to configure your Execution Policy. For more information about
selecting an execution policy, see Recipe 16.1, Enable Scripting
Through an Execution Policy” in Chapter 16.

Bridging Technologies
We’ve seen how PowerShell lets you to fully leverage the .NET Framework in your
tasks, but its support for common technologies stretches even further. As
Example T-5 shows, PowerShell supports XML:

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="http://blogs.msdn.com/utility/FeedS
tylesheets/rss.xsl" media="screen"?><rss version="2.0" xmlns:dc="http://pu
rl.org/dc/elements/1.1/" xmlns:slash="http://purl.org/rss/1.0/modules/slas
h/" xmlns:wfw="http://wellformedweb.org/CommentAPI/"><channel><title>Windo
(...)

Example T-5. Working with XML content in PowerShell

PS >$xmlContent = [xml] $content
PS >$xmlContent

xml xml-stylesheet rss
--- -------------- ---
 rss

PS >$xmlContent.rss

version : 2.0
dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/

Example T-4. Using objects from the .NET Framework to retrieve a web page and process its content

Bridging Technologies | 13

Powershell also lets you work with Windows Management Instrumentation (WMI):

PS >Get-WmiObject Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

or, as Example T-6 shows, Active Directory Service Interfaces (ADSI):

channel : channel

PS >$xmlContent.rss.channel.item | select Title

title

CMD.exe compatibility
Time Stamping Log Files
Microsoft Compute Cluster now has a PowerShell Provider and Cmdlets
The Virtuous Cycle: .NET Developers using PowerShell
(...)

Example T-6. Working with Active Directory in PowerShell

PS >[ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}
MaxStorage : {-1}
PasswordAge : {19550795}
PasswordExpired : {0}
LoginHours : {255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255}
FullName : {}
Description : {Built-in account for administering the compu
 ter/domain}
BadPasswordAttempts : {0}
LastLogin : {5/21/2007 3:00:00 AM}
HomeDirectory : {}
LoginScript : {}
Profile : {}
HomeDirDrive : {}
Parameters : {}
PrimaryGroupID : {513}
Name : {Administrator}
MinPasswordLength : {0}
MaxPasswordAge : {3710851}
MinPasswordAge : {0}

Example T-5. Working with XML content in PowerShell (continued)

14 | A Guided Tour of Windows PowerShell

or, as Example T-7 shows, even scripting traditional COM objects:

Namespace Navigation Through Providers
Another avenue PowerShell provides for working with the system is providers. Pow-
erShell providers let you navigate and manage data stores using the same techniques
you already use to work with the filesystem, as illustrated in Example T-8.

PasswordHistoryLength : {0}
AutoUnlockInterval : {1800}
LockoutObservationInterval : {1800}
MaxBadPasswordsAllowed : {0}
RasPermissions : {1}
objectSid : {1 5 0 0 0 0 0 5 21 0 0 0 121 227 252 83 122
 130 50 34 67 23 10 50 244 1 0 0}

Example T-7. Working with COM objects in PowerShell

PS >$firewall = New-Object -com HNetCfg.FwMgr
PS >$firewall.LocalPolicy.CurrentProfile

Type : 1
FirewallEnabled : True
ExceptionsNotAllowed : False
NotificationsDisabled : False
UnicastResponsesToMulticastBroadcastDisabled : False
RemoteAdminSettings : System.__ComObject
IcmpSettings : System.__ComObject
GloballyOpenPorts : {Media Center Extender Serv
 ice, Remote Media Center Ex
 perience, Adam Test Instanc
 e, QWAVE...}
Services : {File and Printer Sharing,
 UPnP Framework, Remote Desk
 top}
AuthorizedApplications : {Remote Assistance, Windows
 Messenger, Media Center, T
 rillian...}

Example T-8. Navigating the filesystem

PS >Set-Location c:\
PS >Get-ChildItem

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Example T-6. Working with Active Directory in PowerShell (continued)

Namespace Navigation Through Providers | 15

This also works on the registry, as shown in Example T-9:

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/2/2006 4:36 AM $WINDOWS.~BT
d---- 5/8/2007 8:37 PM Blurpark
d---- 11/29/2006 2:47 PM Boot
d---- 11/28/2006 2:10 PM DECCHECK
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 5/21/2007 6:02 PM F&SC-demo
d---- 4/2/2007 7:21 PM Inetpub
d---- 5/20/2007 4:59 PM Program Files
d---- 5/21/2007 11:47 PM temp
d---- 5/21/2007 8:55 PM Windows
-a--- 1/7/2006 10:37 PM 0 autoexec.bat
-ar-s 11/29/2006 1:39 PM 8192 BOOTSECT.BAK
-a--- 1/7/2006 10:37 PM 0 config.sys
-a--- 5/1/2007 8:43 PM 33057 RUU.log
-a--- 4/2/2007 7:46 PM 2487 secedit.INTEG.RAW

Example T-9. Navigating the registry

PS >Set-Location HKCU:\Software\Microsoft\Windows\
PS >Get-ChildItem

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\Mi
crosoft\Windows

SKC VC Name Property
--- -- ---- --------
 30 1 CurrentVersion {ISC}
 3 1 Shell {BagMRU Size}
 4 2 ShellNoRoam {(default), BagMRU Size}

PS >Set-Location CurrentVersion\Run
PS >Get-ItemProperty .

(...)
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /ba
 ckground
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
(...)

Example T-8. Navigating the filesystem (continued)

16 | A Guided Tour of Windows PowerShell

Or even the machine’s certificate store, as Example T-10 illustrates.

Much, Much More
As exciting as this guided tour was, it barely scratches the surface of how you can use
PowerShell to improve your productivity and systems management skills. For more
information about getting started in PowerShell, see Chapter 1, The Windows Power-
Shell Interactive Shell.

Example T-10. Navigating the certificate store

PS >Set-Location cert:\CurrentUser\Root
PS >Get-ChildItem

 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root Certificate...
BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte Timestamping CA, OU...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Authority, ...
9FE47B4D05D46E8066BAB1D1BFC9E48F1DBE6B26 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99FA3B5247 CN=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9E04741E85 OU=Copyright (c) 1997 Microso...
(...)

PART II

II.Fundamentals

Chapter 1, The Windows PowerShell Interactive Shell

Chapter 2, Pipelines

Chapter 3, Variables and Objects

Chapter 4, Looping and Flow Control

Chapter 5, Strings and Unstructured Text

Chapter 6, Calculations and Math

19

Chapter 1 CHAPTER 1

The Windows PowerShell
Interactive Shell2

1.0 Introduction
Above all else, the design of Windows PowerShell places priority on its use as an effi-
cient and powerful interactive shell. Even its scripting language plays a critical role in
this effort, as it too heavily favors interactive use.

What surprises most people when they first launch PowerShell is its similarity to the
command prompt that has long existed as part of Windows. Familiar tools continue
to run. Familiar commands continue to run. Even familiar hotkeys are the same.
Supporting this familiar user interface, though, is a powerful engine that lets you
accomplish once cumbersome administrative and scripting tasks with ease.

This chapter introduces PowerShell from the perspective of its interactive shell.

1.1 Run Programs, Scripts, and Existing Tools

Problem
You rely on a lot of effort invested in your current tools. You have traditional execut-
ables, Perl scripts, VBScript, and of course, a legacy build system that has organically
grown into a tangled mess of batch files. You want to use PowerShell, but don’t want
to give up everything you already have.

Solution
To run a program, script, batch file, or other executable command in the system’s
path, enter its filename. For these executable types, the extension is optional:

Program.exe arguments
ScriptName.ps1 arguments
BatchFile.cmd arguments

20 | Chapter 1: The Windows PowerShell Interactive Shell

To run a command that contains a space in its name, enclose its filename in single-
quotes (') and precede the command with an ampersand (&), known in PowerShell
as the Invoke operator:

& 'C:\Program Files\Program\Program.exe' arguments

To run a command in the current directory, place .\ in front of its filename:

.\Program.exe arguments

To run a command with spaces in its name from the current directory, precede it
with both an ampersand and .\:

& '.\Program With Spaces.exe' arguments

Discussion
In this case, the solution is mainly to use your current tools as you always have. The
only difference is that you run them in the PowerShell interactive shell, rather than
cmd.exe.

The final three tips in the solution merit special attention. They are the features of
PowerShell that many new users stumble on when it comes to running programs.
The first is running commands that contain spaces. In cmd.exe, the way to run a
command that contains spaces is to surround it with quotes:

"C:\Program Files\Program\Program.exe"

In PowerShell, though, placing text inside quotes is part of a feature that lets you
evaluate complex expressions at the prompt, as shown in Example 1-1.

So, a program name in quotes is no different from any other string in quotes. It’s just
an expression. As shown previously, the way to run a command in a string is to pre-
cede that string with the invoke (&) operator. If the command you want to run is a
batch file that modifies its environment, see Recipe 1.8, “Program: Retain Changes
to Environment Variables Set by a Batch File.”

Example 1-1. Evaluating expressions at the PowerShell prompt

PS >1 + 1
2
PS >26 * 1.15
29.9
PS >"Hello" + " World"
Hello World
PS >"Hello World"
Hello World
PS >"C:\Program Files\Program\Program.exe"
C:\Program Files\Program\Program.exe
PS >

1.2 Run a PowerShell Command | 21

By default, PowerShell’s security policies prevent scripts from run-
ning. Once you begin writing or using scripts, though, you should
configure this policy to something less restrictive. For information on
how to configure your execution policy, see Recipe 16.1, “Enable
Scripting Through an Execution Policy.”

The second command that new users (and seasoned veterans before coffee!) some-
times stumble on is running commands from the current directory. In cmd.exe, the
current directory is considered part of the path—the list of directories that Windows
searches to find the program name you typed. If you are in the C:\Programs direc-
tory, cmd.exe looks in C:\Programs (among other places) for applications to run.

PowerShell, like most Unix shells, requires that you explicitly state your desire to run
a program from the current directory. To do that, you use the .\Program.exe syntax,
as shown previously. This prevents malicious users on your system from littering
your hard drive with evil programs that have names similar to (or the same as) com-
mands you might run while visiting that directory.

To save themselves from having to type the location of commonly used scripts and
programs, many users put these utilities along with their PowerShell scripts in a
“tools” directory, which they add to their system’s path. If PowerShell can find a script
or utility in your system’s path, you do not need to explicitly specify its location.

Scripts and examples from this book are available at http://www.
oreilly.com/catalog/9780596528492.

To learn how to write a PowerShell script, see Recipe 10.1, “Write a Script.

See Also
• Recipe 1.8, “Program: Retain Changes to Environment Variables Set by a Batch

File”

• Recipe 10.1, “Write a Script

• Recipe 16.1, “Enable Scripting Through an Execution Policy”

1.2 Run a PowerShell Command

Problem
You want to run a PowerShell command.

22 | Chapter 1: The Windows PowerShell Interactive Shell

Solution
To run a PowerShell command, type its name at the command prompt. For example:

PS >Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 133 5 11760 7668 46 1112 audiodg
 184 5 33248 508 93 1692 avgamsvr
 143 7 31852 984 97 1788 avgemc

Discussion
The Get-Process command is an example of a native PowerShell command, called a
cmdlet. As compared to traditional commands, cmdlets provide significant benefits
to both administrators and developers:

• They share a common and regular command-line syntax.

• They support rich pipeline scenarios (using the output of one command as the
input of another).

• They produce easily manageable object-based output, rather than error-prone
plain text output.

Because the Get-Process cmdlet generates rich object-based output, you can use its
output for many process-related tasks.

The Get-Process cmdlet is just one of the many that PowerShell supports. See Recipe
1.4, “Find a Command to Accomplish a Task” to learn techniques for finding addi-
tional commands that PowerShell supports.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 1.4, “Find a Command to Accomplish a Task”

• Recipe 3.4, “Work with .NET Objects”

1.3 Customize Your Shell, Profile, and Prompt

Problem
You want to customize PowerShell’s interactive experience with a personalized
prompt, aliases, and more.

1.3 Customize Your Shell, Profile, and Prompt | 23

Solution
When you want to customize aspects of PowerShell, place those customizations in
your personal profile script. PowerShell provides easy access to this profile script by
storing its location in the $profile variable.

By default, PowerShell’s security policies prevent scripts (including
your profile) from running. Once you begin writing scripts, though,
you should configure this policy to something less restrictive. For
information on how to configure your execution policy, see Recipe
16.1, “Enable Scripting Through an Execution Policy.”

To create a new profile (and overwrite one if it already exists):

New-Item -type file -force $profile

To edit your profile:

notepad $profile

To see your profile file:

Get-ChildItem $profile

Once you create a profile script, you can add a function called Prompt that returns a
string. PowerShell displays the output of this function as your command-line
prompt.

function Prompt
{
 "PS [$env:COMPUTERNAME] >"
}

This example prompt displays your computer name, and look like: PS [LEE-DESK]>

You may also find it helpful to add aliases to your profile. Aliases let you to refer to
common commands by a name that you choose. Personal profile scripts let you auto-
matically define aliases, functions, variables, or any other customizations that you
might set interactively from the PowerShell prompt. Aliases are among the most
common customizations, as they let you refer to PowerShell commands (and your
own scripts) by a name that is easier to type.

If you want to define an alias for a command but also need to modify
the parameters to that command, then define a function instead.

For example:

Set-Alias new New-Object
Set-Alias iexplore 'C:\Program Files\Internet Explorer\iexplore.exe'

24 | Chapter 1: The Windows PowerShell Interactive Shell

Your changes will become effective once you save your profile and restart Power-
Shell. To reload your profile immediately, run the command:

. $profile

Functions are also very common customizations, with the most popular of those
being the Prompt function.

Discussion
Although the Prompt function returns a simple string, you can also use the function
for more complex tasks. For example, many users update their console window title
(by changing the $host.UI.RawUI.WindowTitle variable) or use the Write-Host cmdlet
to output the prompt in color. If your prompt function handles the screen output
itself, it still needs to return a string (for example, a single space) to prevent Power-
Shell from using its default. If you don’t want this extra space to appear in your
prompt, add an extra space at the end of your Write-Host command and return the
backspace ("`b") character, as shown in Example 1-2.

In addition to showing the current location, this prompt also shows the ID for that
command in your history. This lets you locate and invoke past commands with rela-
tive ease:

[C:\]
PS:73 >5 * 5
25

[C:\]
PS:74 >1 + 1
2

[C:\]
PS:75 >Invoke-History 73
5 * 5

Example 1-2. An example PowerShell prompt

function Prompt
{
 $id = 1
 $historyItem = Get-History -Count 1
 if($historyItem)
 {
 $id = $historyItem.Id + 1
 }

 Write-Host -ForegroundColor DarkGray "`n[$(Get-Location)]"
 Write-Host -NoNewLine "PS:$id > "
 $host.UI.RawUI.WindowTitle = "$(Get-Location)"

 "`b"
}

1.4 Find a Command to Accomplish a Task | 25

25

[C:\]
PS:76 >

Although the profile referenced by $profile is the one you will almost always want
to use, PowerShell actually supports four separate profile scripts. For further details
of these scripts (along with other shell customization options), see “Common Cus-
tomization Points” in Appendix A.

See Also
• Recipe 16.1, “Enable Scripting Through an Execution Policy.”

• “Common Customization Points” in Appendix A

1.4 Find a Command to Accomplish a Task

Problem
You want to accomplish a task in PowerShell but don’t know the command or
cmdlet to accomplish that task.

Solution
Use the Get-Command cmdlet to search for and investigate commands.

To get the summary information about a specific command, specify the command
name as an argument:

Get-Command CommandName

To get the detailed information about a specific command, pipe the output of Get-
Command to the Format-List cmdlet:

Get-Command CommandName | Format-List

To search for all commands with a name that contains text, surround the text with
asterisk characters:

Get-Command *text*

To search for all commands that use the Get verb, supply Get to the -Verb parameter:

Get-Command -Verb Get

To search for all commands that act on a service, supply Service to the -Noun
parameter:

Get-Command -Noun Service

26 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion
One of the benefits that PowerShell provides administrators is the consistency of its
command names. All PowerShell commands (called cmdlets) follow a regular Verb-
Noun pattern. For example: Get-Process, Get-EventLog, and Set-Location. The verbs
come from a relatively small set of standard verbs (as listed in Appendix D, Standard
PowerShell Verbs), and describe what action the cmdlet takes. The nouns are spe-
cific to the cmdlet and describe what the cmdlet acts on.

Knowing this philosophy, you can easily learn to work with groups of cmdlets. If you
want to start a service on the local machine, the standard verb for that is Start. A
good guess would be to first try Start-Service (which in this case would be correct),
but typing Get-Command -Verb Start would also be an effective way to see what things
you can start. Going the other way, you can see what actions are supported on ser-
vices by typing Get-Command -Noun Service.

See Recipe 1.5, “Get Help on a Command” for a way to list all commands along with
a brief description of what they do.

The Get-Command cmdlet is one of the three commands you will use most commonly
as you explore Windows PowerShell. The other two commands are Get-Help and
Get-Member.

There is one important point when it comes to looking for a PowerShell command to
accomplish a task. Many times, that PowerShell command does not exist, because
the task is best accomplished the same way it always was—shutdown.exe to reboot a
machine, netstat.exe to list protocol statistics and current TCP/IP network connec-
tions, and many more.

For more information about the Get-Command cmdlet, type Get-Help Get-Command.

See Also
• Recipe 1.5, “Get Help on a Command”

1.5 Get Help on a Command

Problem
You want to learn about how a specific command works and how to use it.

Solution
The command that provides help and usage information about a command is called
Get-Help. It supports several different views of the help information, depending on
your needs.

1.5 Get Help on a Command | 27

To get the summary of help information for a specific command, provide the com-
mand’s name as an argument to the Get-Help cmdlet. This primarily includes its syn-
opsis, syntax, and detailed description:

Get-Help CommandName

or

CommandName -?

To get the detailed help information for a specific command, supply the –Detailed
flag to the Get-Help cmdlet. In addition to the summary view, this also includes its
parameter descriptions and examples:

Get-Help CommandName -Detailed

To get the full help information for a specific command, supply the –Full flag to the
Get-Help cmdlet. In addition to the detailed view, this also includes its full parame-
ter descriptions and additional notes:

Get-Help CommandName -Full

To get only the examples for a specific command, supply the –Examples flag to the
Get-Help cmdlet:

Get-Help CommandName -Examples

Discussion
The Get-Help cmdlet is the primary way to interact with the help system in Power-
Shell. Like the Get-Command cmdlet, the Get-Help cmdlet supports wildcards. If you
want to list all commands that match a certain pattern (for example, *process*), you
can simply type Get-Help *process*.

To generate a list of all cmdlets along with a brief synopsis, run the fol-
lowing command:

Get-Help * | Select-Object Name,Synopsis | Format-Table -Auto

If the pattern matches only a single command, PowerShell displays the help for that
command. Although wildcarding is a helpful way to search PowerShell help, see
Recipe 1.6, “Program: Search Help for Text” for a script that lets you search the
help content for a specified pattern.

The Get-Help cmdlet is one of the three commands you will use most commonly as
you explore Windows PowerShell. The other two commands are Get-Command and
Get-Member.

For more information about the Get-Help cmdlet, type Get-Help Get-Help.

28 | Chapter 1: The Windows PowerShell Interactive Shell

See Also
• Recipe 1.6, “Program: Search Help for Text”

1.6 Program: Search Help for Text
Both the Get-Command and Get-Help cmdlets let you search for command names that
match a given pattern. However, when you don’t know exactly what portions of a
command name you are looking for, you will more often have success searching
through the help content for an answer. On Unix systems, this command is called
Apropos. Similar functionality does not exist as part of the PowerShell’s help facili-
ties, however.

That doesn’t need to stop us, though, as we can write the functionality ourselves.

To run this program, supply a search string to the Search-Help script (given in
Example 1-3). The search string can be either simple text or a regular expression.
The script then displays the name and synopsis of all help topics that match. To see
the help content for that topic, use the Get-Help cmdlet.

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

Example 1-3. Search-Help.ps1

##
##
Search-Help.ps1
##
Search the PowerShell help documentation for a given keyword or regular
expression.
##
Example:
Search-Help hashtable
Search-Help "(datetime|ticks)"
##

param($pattern = $(throw "Please specify content to search for"))

$helpNames = $(Get-Help * | Where-Object { $_.Category -ne "Alias" })

foreach($helpTopic in $helpNames)
{
 $content = Get-Help -Full $helpTopic.Name | Out-String
 if($content -match $pattern)
 {
 $helpTopic | Select-Object Name,Synopsis
 }
}

1.7 Invoke a PowerShell Script From Outside PowerShell | 29

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

1.7 Invoke a PowerShell Script From Outside
PowerShell

Problem
You want to invoke a PowerShell script from a batch file, a logon script, scheduled
task, or any other non-PowerShell application.

Solution
Launch PowerShell.exe in the following way:

PowerShell "& 'full path to script' arguments"

For example,

PowerShell "& 'c:\shared scripts\Get-Report.ps1' Hello World"

Discussion
Supplying a single string argument to PowerShell.exe invokes PowerShell, runs the
command as though you had typed it in the interactive shell, and then exits. Since
the path to a script often contains spaces, you invoke the script by placing its name
between single quotes, and after the & character. If the script name does not contain
spaces, you can omit the single quotes and & character. This technique lets you
invoke a PowerShell script as the target of a logon script, advanced file association,
scheduled task and more.

If you are the author of the program that needs to run PowerShell
scripts or commands, PowerShell lets you call these scripts and com-
mands much more easily than calling its command-line interface. For
more information about this approach, see Recipe 15.13, “Add Power-
Shell Scripting to Your Own Program.”

If the command becomes much more complex than a simple script call, special char-
acters in the application calling PowerShell (such as cmd.exe) might interfere with the
command you want to send to PowerShell. For this situation, PowerShell supports
an EncodedCommand parameter: a Base64 encoded representation of the Unicode string
you want to run. Example 1-4 demonstrates how to convert a string containing Pow-
erShell commands to a Base64 encoded form.

30 | Chapter 1: The Windows PowerShell Interactive Shell

Once you have the encoded string, you can use it as the value of the EncodedCommand
parameter, as shown in Example 1-5.

For more information about how to invoke PowerShell scripts, see Recipe 1.1, “Run
Programs, Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 15.13, “Add PowerShell Scripting to Your Own Program”

1.8 Program: Retain Changes to Environment
Variables Set by a Batch File

When a batch file modifies an environment variable, cmd.exe retains this change
even after the script exits. This often causes problems, as one batch file can acciden-
tally pollute the environment of another. That said, batch file authors sometimes
intentionally change the global environment to customize the path and other aspects
of the environment to suit a specific task.

However, environment variables are private details of a process and disappear when
that process exits. This makes the environment customization scripts mentioned

Example 1-4. Converting PowerShell commands into a Base64 encoded form

$commands = '1..10 | % { "PowerShell Rocks" }'
$bytes = [System.Text.Encoding]::Unicode.GetBytes($commands)
$encodedString = [Convert]::ToBase64String($bytes)

Example 1-5. Launching PowerShell with an encoded command from cmd.exe

Microsoft Windows [Version 6.0.6000]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Users\Lee>PowerShell -EncodedCommand MQAuAC4AMQAwACAAfAAgACUAIAB7ACAAIgBQAG8A↵
dwBlAHIAUwBoAGUAbABsACAAUgBvAGMAawBzACIAIAB9AA==
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks

1.8 Program: Retain Changes to Environment Variables Set by a Batch File | 31

above stop working when you run them from PowerShell—just as they fail to work
when you run them from another cmd.exe (for example, cmd.exe /c MyScript.cmd).

The script in Example 1-6 lets you run batch files that modify the environment and
retain their changes even after cmd.exe exits. It accomplishes this by storing the envi-
ronment variables in a text file once the batch file completes, and then setting all
those environment variables again in your PowerShell session.

To run this script, type Invoke-CmdScript Scriptname.cmd or Invoke-CmdScript
Scriptname.bat—whichever extension the batch files uses.

If this is the first time you’ve run a script in PowerShell, you will need
to configure your Execution Policy. For more information about
selecting an execution policy, see Recipe 16.1, “Enable Scripting
Through an Execution Policy.”

Notice that this script uses the full names for cmdlets: Get-Content, Foreach-Object,
Set-Content, and Remove-Item. This makes the script readable and is ideal for scripts
that somebody else will read. It is by no means required, though. For quick scripts
and interactive use, shorter aliases (such as gc, %, sc, and ri) can make you more
productive.

Example 1-6. Invoke-CmdScript.ps1

##
##
Invoke-CmdScript.ps1
##
Invoke the specified batch file (and parameters), but also propagate any
environment variable changes back to the PowerShell environment that
called it.
##
i.e., for an already existing 'foo-that-sets-the-FOO-env-variable.cmd':
##
PS > type foo-that-sets-the-FOO-env-variable.cmd
@set FOO=%*
echo FOO set to %FOO%.
##
PS > $env:FOO
##
PS > Invoke-CmdScript "foo-that-sets-the-FOO-env-variable.cmd" Test
##
C:\Temp>echo FOO set to Test.
FOO set to Test.
##
PS > $env:FOO
Test
##
##

param([string] $script, [string] $parameters)

32 | Chapter 1: The Windows PowerShell Interactive Shell

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 16.1, “Enable Scripting Through an Execution Policy”

1.9 Get the System Date and Time

Problem
You want to get the system date.

Solution
To get the system date, run the command Get-Date.

Discussion
The Get-Date command generates rich object-based output, so you can use its result
for many date-related tasks. For example, to determine the current day of the week:

PS >$date = Get-Date
PS >$date.DayOfWeek
Sunday

For more information about the Get-Date cmdlet, type Get-Help Get-Date.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

$tempFile = [IO.Path]::GetTempFileName()

Store the output of cmd.exe. We also ask cmd.exe to output
the environment table after the batch file completes
cmd /c " `"$script`" $parameters && set > `"$tempFile`" "

Go through the environment variables in the temp file.
For each of them, set the variable in our local environment.
Get-Content $tempFile | Foreach-Object {
 if($_ -match "^(.*?)=(.*)$")
 {
 Set-Content "env:\$($matches[1])" $matches[2]
 }
}

Remove-Item $tempFile

Example 1-6. Invoke-CmdScript.ps1 (continued)

1.10 Determine the Status of the Last Command | 33

See Also
• Recipe 3.4, “Work with .NET Objects”

1.10 Determine the Status of the Last Command

Problem
You want to get status information about the last command you executed, such as
whether it succeeded.

Solution
Use one of the two variables PowerShell provides to determine the status of the last
command you executed: the $lastExitCode variable and the $? variable.

$lastExitCode
A number that represents the exit code/error level of the last script or applica-
tion that exited

$? (pronounced “dollar hook”)
A Boolean value that represents the success or failure of the last command

Discussion
The $lastExitCode PowerShell variable is similar to the %errorlevel% variable in
DOS. It holds the exit code of the last application to exit. This lets you continue to
interact with traditional executables (such as ping, findstr, and choice) that use exit
codes as a primary communication mechanism. PowerShell also extends the mean-
ing of this variable to include the exit codes of scripts, which can set their status
using the exit statement. Example 1-7 demonstrates this interaction.

Example 1-7. Interacting with the $lastExitCode and $? variables

PS >ping localhost

Pinging MyComputer [127.0.0.1] with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milliseconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms
PS >$?
True
PS >$lastExitCode

34 | Chapter 1: The Windows PowerShell Interactive Shell

The $? variable describes the exit status of the last application in a more general
manner. PowerShell sets this variable to False on error conditions such as when:

• An application exits with a non-zero exit code.

• A cmdlet or script writes anything to its error stream.

• A cmdlet or script encounters a terminating error or exception.

For commands that do not indicate an error condition, PowerShell sets the $? vari-
able to True.

1.11 Measure the Duration of a Command

Problem
You want to know how long a command takes to execute.

Solution
To measure the duration of a command, use the Measure-Command cmdlet:

PS >Measure-Command { Start-Sleep -Milliseconds 337 }

Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 339
Ticks : 3392297
TotalDays : 3.92626967592593E-06
TotalHours : 9.42304722222222E-05
TotalMinutes : 0.00565382833333333
TotalSeconds : 0.3392297
TotalMilliseconds : 339.2297

Discussion
In interactive use, it is common to want to measure the duration of a command. An
example of this might be running a performance benchmark on an application
you’ve developed. The Measure-Command cmdlet makes this easy to do. Because the

0
PS >ping missing-host
Ping request could not find host missing-host. Please check the name and try again.
PS >$?
False
PS >$lastExitCode
1

Example 1-7. Interacting with the $lastExitCode and $? variables (continued)

1.12 Customize the Shell to Improve Your Productivity | 35

command generates rich object-based output, you can use its output for many date-
related tasks. See Recipe 3.4, “Work with .NET Objects,” for more information.

For more information about the Measure-Command cmdlet, type Get-Help Measure-
Command.

See Also
• Recipe 3.4, “Work with .NET Objects”

1.12 Customize the Shell to Improve Your Productivity

Problem
You want to use the PowerShell console more efficiently for copying, pasting, his-
tory management, and scrolling.

Solution
Run the commands shown in Example 1-8 to permanently customize your Power-
Shell console windows and make many tasks easier.

These commands customize the console color, font, history storage properties,
QuickEdit mode, buffer size, and window size.

With these changes in place, you can also improve your productivity by learning
some of the hotkeys for common tasks, as listed in Table 1-1. PowerShell uses the
same input facilities as cmd.exe, and so brings with it all the input features that you
are already familiar with—and some that you aren’t!

Example 1-8. Set-ConsoleProperties.ps1

Push-Location
Set-Location HKCU:\Console
New-Item '.\%SystemRoot%_system32_WindowsPowerShell_v1.0_powershell.exe'
Set-Location '.\%SystemRoot%_system32_WindowsPowerShell_v1.0_powershell.exe'

New-ItemProperty . ColorTable00 -type DWORD -value 0x00562401
New-ItemProperty . ColorTable07 -type DWORD -value 0x00f0edee
New-ItemProperty . FaceName -type STRING -value "Lucida Console"
New-ItemProperty . FontFamily -type DWORD -value 0x00000036
New-ItemProperty . FontSize -type DWORD -value 0x000c0000
New-ItemProperty . FontWeight -type DWORD -value 0x00000190
New-ItemProperty . HistoryNoDup -type DWORD -value 0x00000000
New-ItemProperty . QuickEdit -type DWORD -value 0x00000001
New-ItemProperty . ScreenBufferSize -type DWORD -value 0x0bb80078
New-ItemProperty . WindowSize -type DWORD -value 0x00320078
Pop-Location

36 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion
When you launch PowerShell from the link on your Windows Start menu, it custom-
izes several aspects of the console window:

• Foreground and background color, to make the console more visually appealing

• QuickEdit mode, to make copying and pasting with the mouse easier

• Buffer size, to make PowerShell retain the output of more commands in your
console history

By default, these customizations do not apply when you run PowerShell from the
Start ➝ Run dialog. The commands given in the solution section improve the experi-
ence by applying these changes to all PowerShell windows that you open.

The hotkeys do, however, apply to all PowerShell windows (and any other applica-
tion that uses Windows’ cooked input mode). The most common are given in the in
the solution section, but “Common Customization Points” in Appendix A provides
the full list.

See Also
• “Common Customization Points” in Appendix A

1.13 Program: Learn Aliases for Common Commands
In interactive use, full cmdlet names (such as Get-ChildItem) are cumbersome and
slow to type. Although aliases are much more efficient, it takes awhile to discover
them. To learn aliases more easily, you can modify your prompt to remind you of the
shorter version of any aliased commands that you use.

This involves two steps:

Table 1-1. Partial list of Windows PowerShell hotkeys

Hotkey Meaning

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

PgUp Display the first command in your command history.

PgDown Display the last command in your command history.

Left arrow Move cursor one character to the left on your command line.

Right arrow Move cursor one character to the right on your command line.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

Control + Left arrow Move the cursor one word to the left on your command line.

Control + Right arrow Move the cursor one word to the right on your command line.

1.13 Program: Learn Aliases for Common Commands | 37

1. Add the program, Get-AliasSuggestion.ps1, shown in Example 1-9, to your
tools directory or other directory.

2. Add the text from Example 1-10 to the Prompt function in your profile. If you do
not yet have a Prompt function, see Recipe 1.3, “Customize Your Shell, Profile,
and Prompt” to learn how to add one. If you already have a prompt function,
you only need to add the content from inside the prompt function of
Example 1-10.

Example 1-9. Get-AliasSuggestion.ps1

##
##
Get-AliasSuggestion.ps1
##
Get an alias suggestion from the full text of the last command
##
ie:
##
PS > Get-AliasSuggestion Remove-ItemProperty
Suggestion: An alias for Remove-ItemProperty is rp
##
##

param($lastCommand)

$helpMatches = @()

Get the alias suggestions
foreach($alias in Get-Alias)
{
 if($lastCommand -match ("\b" +
 [System.Text.RegularExpressions.Regex]::Escape($alias.Definition) + "\b"))
 {
 $helpMatches += "Suggestion: An alias for $($alias.Definition) is $($alias.Name)"
 }
}

$helpMatches

Example 1-10. A useful prompt to teach you aliases for common commands

function Prompt
{
 ## Get the last item from the history
 $historyItem = Get-History -Count 1

 ## If there were any history items
 if($historyItem)
 {
 ## Get the training suggestion for that item
 $suggestions = @(Get-AliasSuggestion $historyItem.CommandLine)

38 | Chapter 1: The Windows PowerShell Interactive Shell

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 1.3, “Customize Your Shell, Profile, and Prompt”

1.14 Access and Manage Your Console History

Problem
After working in the shell for awhile, you want to invoke commands from your his-
tory, view your command history, and save your command history.

Solution
The shortcuts given in Recipe 1.12, “Customize the Shell to Improve Your Produc-
tivity” let you manage your history, but PowerShell offers several features to help
you work with your console in even more detail.

To get the most recent commands from your session, use the Get-History cmdlet:

Get-History

To rerun a specific command from your session history, provide its Id to the Invoke-
History cmdlet:

Invoke-History Id

To increase (or limit) the number of commands stored in your session history, assign
a new value to the $MaximumHistoryCount variable:

$MaximumHistoryCount = Count

 ## If there were any suggestions
 if($suggestions)
 {
 ## For each suggestion, write it to the screen
 foreach($aliasSuggestion in $suggestions)
 {
 Write-Host "$aliasSuggestion"
 }
 Write-Host ""
 }
 }

 ## Rest of prompt goes here
 "PS [$env:COMPUTERNAME] >"
}

Example 1-10. A useful prompt to teach you aliases for common commands (continued)

1.15 Store the Output of a Command into a File | 39

To save your command history to a file, pipe the output of Get-History to the
Export-CliXml cmdlet:

Get-History | Export-CliXml Filename

To add a previously saved command history to your current session history, call the
Import-CliXml cmdlet and then pipe that output to the Add-History cmdlet:

Import-CliXml Filename | Add-History

Discussion
Unlike the console history hotkeys discussed in Recipe 1.12, “Customize the Shell to
Improve Your Productivity” the Get-History cmdlet produces rich objects that repre-
sent information about items in your history. Each object contains that item’s ID, com-
mand line, start of execution time, and end of execution time.

Once you know the ID of a history item (as shown in the output of Get-History), you
can pass it to Invoke-History to execute that command again. The example prompt
function shown in Recipe 1.3, “Customize Your Shell, Profile, and Prompt” makes
working with prior history items easy—as the prompt for each command includes
the history ID that will represent it.

The IDs provided by the Get-History cmdlet differ from the IDs given
by the Windows console common history hotkeys (such as F7),
because their history management techniques differ.

By default, PowerShell stores only the last 64 entries of your command history. If you
want to raise or lower this amount, set the $MaximumHistoryCount variable to the size
you desire. To make this change permanent, set the variable in your PowerShell pro-
file script. To clear your history, either restart the shell, or temporarily set the
$MaximumHistoryCount variable to 1.

See Also
• Recipe 1.3, “Customize Your Shell, Profile, and Prompt”

• Recipe 1.12, “Customize the Shell to Improve Your Productivity”

1.15 Store the Output of a Command into a File

Problem
You want to redirect the output of a pipeline into a file.

40 | Chapter 1: The Windows PowerShell Interactive Shell

Solution
To redirect the output of a command into a file, use either the Out-File cmdlet or
one of the redirection operators.

Out-File:

Get-ChildItem | Out-File unicodeFile.txt
Get-Content filename.cs | Out-File -Encoding ASCII file.txt
Get-ChildItem | Out-File-Width 120 unicodeFile.cs

Redirection operators:

Get-ChildItem > files.txt
Get-ChildItem 2> errors.txt

Discussion
The Out-File cmdlet and redirection operators share a lot in common—and for the
most part, you can use either. The redirection operators are unique because they give
the greatest amount of control over redirecting individual streams. The Out-File
cmdlet is unique primarily because it lets you easily configure the formatting width
and encoding.

The default formatting width and the default output encoding are two aspects of out-
put redirection that can sometimes cause difficulty.

The default formatting width sometimes causes problems because redirecting Power-
Shell-formatted output into a file is designed to mimic what you see on the screen. If
your screen is 80 characters wide, the file will be 80 characters wide as well. Exam-
ples of PowerShell-formatted output include directory listings (that are implicitly for-
matted as a table) as well as any commands that you explicitly format using one of
the Format-* set of cmdlets. If this causes problems, you can customize the width of
the file with the —Width parameter on the Out-File cmdlet.

The default output encoding sometimes causes unexpected results because Power-
Shell creates all files using the UTF-16 Unicode encoding by default. This allows
PowerShell to fully support the entire range of international characters, cmdlets, and
output. Although this is a great improvement to traditional shells, it may cause an
unwanted surprise when running large search and replace operations on ASCII
source code files, for example. To force PowerShell to send its output to a file in the
ASCII encoding, use the —Encoding parameter on the Out-File cmdlet.

For more information about the Out-File cmdlet, type Get-Help Out-File. For a full
list of supported redirection operators, see “Capturing Output” in Appendix A.

See Also
• “Capturing Output” in Appendix A

1.17 Record a Transcript of Your Shell Session | 41

1.16 Add Information to the End of a File

Problem
You want to redirect the output of a pipeline into a file but add the information to
the end of that file.

Solution
To redirect the output of a command into a file, use either the -Append parameter of the
Out-File cmdlet, or one of the appending redirection operators as described in “Cap-
turing Output” in Appendix A. Both support options to append text to the end of a file.

Out-File:

Get-ChildItem | Out-File -Append files.txt

Redirection operators:

Get-ChildItem >> files.txt

Discussion
The Out-File cmdlet and redirection operators share a lot in common—and for the
most part, you can use either. See the discussion in Recipe 1.15, “Store the Output of
a Command into a File” for a more detailed comparison of the two approaches,
including reasons that you would pick one over the other.

See Also
• Recipe 1.15, “Store the Output of a Command into a File”

• “Capturing Output” in Appendix A

1.17 Record a Transcript of Your Shell Session

Problem
You want to record a log or transcript of your shell session.

Solution
To record a transcript of your shell session, run the command Start-Transcript
Path. Path is optional and defaults to a filename based on the current system time. By
default, PowerShell places this file in the My Documents directory. To stop recording
the transcript of your shell system, run the command Stop-Transcript.

42 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion
Although the Get-History cmdlet is helpful, it does not record the output produced
during your PowerShell session. To accomplish that, use the Start-Transcript
cmdlet. In addition to the Path parameter described previously, the Start-Transcript
cmdlet also supports parameters that let you control how PowerShell interacts with
the output file.

1.18 Display the Properties of an Item As a List

Problem
You have an item (for example, an error record, directory item, or .NET object), and
you want to display detailed information about that object in a list format.

Solution
To display detailed information about an item, pass that item to the Format-List
cmdlet. For example, to display an error in list format, type the commands:

$currentError = $error[0]
$currentError | Format-List -Force

Discussion
The Format-List cmdlet is one of the three PowerShell formatting cmdlets. These
cmdlets include Format-Table, Format-List, and Format-Wide. The Format-List
cmdlet takes input and displays information about that input as a list. By default,
PowerShell takes the list of properties to display from the *.format.ps1xml files in
PowerShell’s installation directory. To display all properties of the item, type Format-
List *. Sometimes, you might type Format-List * but still not get a list of the item’s
properties. This happens when the item is defined in the *.format.ps1xml files, but
does not define anything to be displayed for the list command. In that case, type
Format-List -Force.

For more information about the Format-List cmdlet, type Get-Help Format-List.

1.19 Display the Properties of an Item As a Table

Problem
You have a set of items (for example, error records, directory items, or .NET objects),
and you want to display summary information about them in a table format.

1.19 Display the Properties of an Item As a Table | 43

Solution
To display summary information about a set of items, pass those items to the Format-
Table cmdlet. This is the default type of formatting for sets of items in PowerShell
and provides several useful features.

To use PowerShell’s default formatting, pipe the output of a cmdlet (such as the Get-
Process cmdlet) to the Format-Table cmdlet:

Get-Process | Format-Table

To display specific properties (such as Name and WorkingSet,) in the table formatting,
supply those property names as parameters to the Format-Table cmdlet:

Get-Process | Format-Table Name,WS

To instruct PowerShell to format the table in the most readable manner, supply the
–Auto flag to the Format-Table cmdlet. PowerShell defines “WS” as an alias of the
WorkingSet for processes:

Get-Process | Format-Table Name,WS -Auto

To define a custom column definition (such as a process’s Working Set in mega-
bytes), supply a custom formatting expression to the Format-Table cmdlet:

$fields = "Name",@{Label = "WS (MB)"; Expression = {$_.WS / 1mb}; Align = "Right"}

Get-Process | Format-Table $fields -Auto

Discussion
The Format-Table cmdlet is one of the three PowerShell formatting cmdlets. These
cmdlets include Format-Table, Format-List, and Format-Wide. The Format-Table
cmdlet takes input and displays information about that input as a table. By default,
PowerShell takes the list of properties to display from the *.format.ps1xml files in
PowerShell’s installation directory. You can display all properties of the items if you
type Format-Table *, although this is rarely a useful view.

The -Auto parameter to Format-Table is a helpful way to automatically format the
table to use screen space as efficiently as possible. It does come at a cost, however.
To figure out the best table layout, PowerShell needs to examine each item in the
incoming set of items. For small sets of items, this doesn’t make much difference, but
for large sets (such as a recursive directory listing) it does. Without the -Auto param-
eter, the Format-Table cmdlet can display items as soon as it receives them. With the
-Auto flag, the cmdlet can only display results after it receives all the input.

Perhaps the most interesting feature of the Format-Table cmdlet is illustrated by the
last example—the ability to define completely custom table columns. You define a
custom table column similarly to the way that you define a custom column list.
Rather than specify an existing property of the items, you provide a hashtable. That
hashtable includes up to three keys: the column’s label, a formatting expression, and
alignment. The Format-Table cmdlet shows the label as the column header and uses

44 | Chapter 1: The Windows PowerShell Interactive Shell

your expression to generate data for that column. The label must be a string, the
expression must be a script block, and the alignment must be either "Left",
"Center", or "Right". In the expression script block, the $_ variable represents the
current item being formatted.

The expression shown in the last example takes the working set of the current item
and divides it by 1 megabyte (1 MB).

For more information about the Format-Table cmdlet, type Get-Help Format-Table.

For more information about hashtables, see Recipe 11.12, “Create a Hashtable or
Associative Array.”

For more information about script blocks, see Recipe 10.3, “Write a Script Block.”

See Also
• Recipe 10.3, “Write a Script Block”

• Recipe 11.12, “Create a Hashtable or Associative Array”

1.20 Manage the Error Output of Commands

Problem
You want to display detailed information about errors that come from commands.

Solution
To list all errors (up to $MaximumErrorCount) that have occurred in this session, access
the $error array:

$error

To list the last error that occurred in this session, access the first element in the
$error array:

$error[0]

To list detailed information about an error, pipe the error into the Format-List
cmdlet with the -Force parameter:

$currentError = $error[0]
$currentError | Format-List -Force

To list detailed information about the command that caused an error, access its
InvocationInfo property:

$currentError = $error[0]
$currentError.InvocationInfo

To display errors in a more succinct category-based view, change the $errorView vari-
able to "CategoryView":

1.21 Configure Debug, Verbose, and Progress Output | 45

$errorView = "CategoryView"

To clear the list of errors collected by PowerShell so far, call the Clear() method on
the $error variable:

$error.Clear()

Discussion
Errors are a simple fact of life in the administrative world. Not all errors mean
disaster, though. Because of this, PowerShell separates errors into two categories:
nonterminating and terminating.

Nonterminating errors are the most common type of error. They indicate that the
cmdlet, script, function, or pipeline encountered an error that it was able to recover
from or was able to continue past. An example of a nonterminating error comes from
the Copy-Item cmdlet. If it fails to copy a file from one location to another, it can still
proceed with the rest of the files specified.

A terminating error, on the other hand, indicates a deeper, more fundamental error
in the operation. An example of this can again come from the Copy-Item cmdlet when
you specify invalid command-line parameters.

For more information on how to handle both nonterminating and terminating errors,
see Chapter 13, Tracing and Error Management.

See Also
• Chapter 13, Tracing and Error Management

1.21 Configure Debug, Verbose, and Progress Output

Problem
You want to manage the detailed debug, verbose, and progress output generated by
cmdlets and scripts.

Solution
To enable debug output for scripts and cmdlets that generate it:

$debugPreference = "Continue"
Start-DebugCommand

To enable verbose mode for a cmdlet that checks for the -Verbose parameter:

Copy-Item c:\temp*.txt c:\temp\backup\ -Verbose

To disable progress output from a script or cmdlet that generates it:

$progressPreference = "SilentlyContinue"
Get-Progress.ps1

46 | Chapter 1: The Windows PowerShell Interactive Shell

Discussion
In addition to error output (as described in Recipe 1.20, “Manage the Error Output
of Commands”), many scripts and cmdlets generate several other types of output.
This includes:

Debug output
Helps you diagnose problems that may arise and can provide a view into the
inner workings of a command. You can use the Write-Debug cmdlet to produce
this type of output in a script or the WriteDebug() method to produce this type
of output in a cmdlet. PowerShell displays this output in yellow, unless you cus-
tomize it through the $host.PrivateData.Debug* color configuration variables.

Verbose output
Helps you monitor the actions of commands at a finer level than the default. You
can use the Write-Verbose cmdlet to produce this type of output in a script or the
WriteVerbose() method to produce this type of output in a cmdlet. PowerShell
displays this output in yellow, unless you customize it through the $host.
PrivateData.Verbose* color configuration variables.

Progress output
Helps you monitor the status of long-running commands. You can use the
Write-Progress cmdlet to produce this type of output in a script or the
WriteProgress() method to produce this type of output in a cmdlet. PowerShell
displays this output in yellow, unless you customize it through the $host.
PrivateData.Progress* color configuration variables.

Some cmdlets generate verbose and debug output only if you specify the -Verbose
and -Debug parameters, respectively.

To configure the debug, verbose, and progress output of a script or cmdlet, modify
the $debugPreference, $verbosePreference, and $progressPreference shell variables.
These variables can accept the following values:

SilentlyContinue
Do not display this output.

Stop
Treat this output as an error.

Continue
Display this output.

Inquire
Display a continuation prompt for this output.

See Also
• Recipe 1.20, “Manage the Error Output of Commands”

1.22 Extend Your Shell with Additional Snapins | 47

1.22 Extend Your Shell with Additional Snapins

Problem
You want to use PowerShell cmdlets and providers written by a third party.

Solution
In PowerShell, extensions that contain additional cmdlets and providers are called
snapins. The author might distribute them with an automated installer but can also
distribute them as a standalone PowerShell assembly. PowerShell identifies each snapin
by the filename of its assembly and by the snapin name that its author provides.

To use a snapin:

1. Obtain the snapin assembly.

2. Copy it to a secure location on your computer. Since snapins are equivalent to
executable programs, pick a location (such as the Program Files directory) that
provides users read access but not write access.

3. Register the snapin. From the directory that contains the snapin assembly, run
InstallUtil SnapinFilename.dll. This command lets all users on the computer
load and run commands defined by the snapin. You can find the InstallUtil
utility in the .NET Framework’s installation directory—commonly C:\WINDOWS\
Microsoft.NET\Framework\v2.0.50727\InstallUtil.exe.

4. Add the snapin. At a PowerShell prompt (or in your profile file), run the com-
mand Add-PsSnapin SnapinIdentifier. To see all available snapin identifiers,
review the names listed in the output of the command:
Get-PsSnapin -Registered

5. Use the cmdlets and providers contained in that snapin.

To remove the snapin registration from your system, type InstallUtil /u
SnapinFilename.dll. Once uninstalled, you may delete the files associated with the
snapin.

Discussion
For interactive use (or in a profile), the Add-PsSnapin cmdlet is the most common
way to load an individual snapin. To load a preconfigured list of snapins, though, the
following section Recipe 1.23, “Use Console Files to Load and Save Sets of Snapins”
offers another option.

One popular source of additional snapins is the PowerShell Community Extensions
project, located at http://www.codeplex.com/PowerShellCX.

See Also
• Recipe 1.23, “Use Console Files to Load and Save Sets of Snapins”

48 | Chapter 1: The Windows PowerShell Interactive Shell

1.23 Use Console Files to Load and Save Sets of
Snapins

Problem
You want to load PowerShell with a set of additional snapins, but do not want to
modify your (or the user’s) profile.

Solution
Once you register a snapin on your system, you can add its snapin identifier to a
PowerShell console file to load it. When you specify that file as the -PsConsoleFile
parameter of PowerShell.exe, PowerShell loads all snapins defined by the console file
into the new session.

Save the list of currently loaded snapins to a console file:

Export-Console Filename.psc1

Load PowerShell with the set of snapins defined in the file Filename.psc1:

PowerShell -PsConsoleFile Filename.psc1

Discussion
PowerShell console files are simple XML files that list the identifiers of already-
installed snapins to load. A typical console file looks like Example 1-11.

Console files should be saved with the file extension .psc1.

Although it is common to load the console file with PowerShell’s command-line
options (in scripts and automated tasks), you can also double-click on the console
file to load it interactively.

For more information on how to manage snapins, see Recipe 1.22, “Extend Your
Shell with Additional Snapins”.

See Also
• Recipe 1.22, “Extend Your Shell with Additional Snapins”

Example 1-11. A typical PowerShell console file

<?xml version="1.0" encoding="utf-8"?>
<PSConsoleFile ConsoleSchemaVersion="1.0">
 <PSVersion>1.0</PSVersion>
 <PSSnapIns>
 <PSSnapIn Name="CustomSnapin" />
 <PSSnapIn Name="SecondSnapin" />
 </PSSnapIns>
</PSConsoleFile>

49

Chapter 2 CHAPTER 2

Pipelines3

2.0 Introduction
One of the fundamental concepts in a shell is called the pipeline. It also forms the
basis of one of the most significant advances that PowerShell brings to the table. A
pipeline is a big name for a simple concept—a series of commands where the output
of one becomes the input of the next. A pipeline in a shell is much like an assembly
line in a factory: it successively refines something as it passes between the stages, as
shown in Example 2-1.

In PowerShell, you separate each stage in the pipeline with the pipe (|) character.

In Example 2-1, the Get-Process cmdlet generates objects that represent actual pro-
cesses on the system. These process objects contain information about the process’s
name, memory usage, process id, and more. The Where-Object cmdlet, then, gets to
work directly with those processes, testing easily for those that use more than 500 kb
of memory. It passes those along, allowing the Sort-Object cmdlet to also work
directly with those processes, sorting them by name in descending order. This brief
example illustrates a significant advancement in the power of pipelines: PowerShell
passes full-fidelity objects along the pipeline, not their text representations.

In contrast, all other shells pass data as plain text between the stages. Extracting
meaningful information from plain-text output turns the authoring of pipelines into
a black art. Expressing the previous example in a traditional Unix-based shell is
exceedingly difficult and nearly impossible in cmd.exe.

Traditional text-based shells make writing pipelines so difficult because they require
you to deeply understand the peculiarities of output formatting for each command in
the pipeline, as shown in Example 2-2.

Example 2-1. A PowerShell pipeline

Get-Process | Where-Object { $_.WorkingSet -gt 500kb } | Sort-Object -Descending Name

50 | Chapter 2: Pipelines

In this example, you have to know that, for every line, group number five represents
the memory usage. You have to know another language (that of the awk tool) to filter
by that column. Finally, you have to know the column range that contains the pro-
cess name (columns 64 to 70 on this system) and then provide that to the sort com-
mand. And that’s just a simple example.

An object-based pipeline opens up enormous possibilities, making system adminis-
tration both immensely more simple and more powerful.

2.1 Filter Items in a List or Command Output

Problem
You want to filter the items in a list or command output.

Solution
Use the Where-Object cmdlet (which has the standard aliases, where and ?) to select
items in a list (or command output) that match a condition you provide.

To list all running processes that have "search" in their name, use the -like operator
to compare against the process’s Name property:

Get-Process | Where-Object { $_.Name -like "*Search*" }

To list all directories in the current location, test the PsIsContainer property:

Get-ChildItem | Where-Object { $_.PsIsContainer }

To list all stopped services, use the -eq operator to compare against the service’s
Status property:

Get-Service | Where-Object { $_.Status -eq "Stopped" }

Discussion
For each item in its input (which is the output of the previous command), the Where-
Object cmdlet evaluates that input against the script block that you specify. If the
script block returns True, then the Where-Object cmdlet passes the object along. Oth-
erwise, it does not. A script block is a series of PowerShell commands enclosed by
the { and } characters. You can write any PowerShell commands inside the script
block. In the script block, the $_ variable represents the current input object. For
each item in the incoming set of objects, PowerShell assigns that item to the $_ vari-
able, and then runs your script block. In the preceding examples, this incoming
object represents the process, file, or service that the previous cmdlet generated.

Example 2-2. A traditional text-based pipeline

lee@trinity:~$ ps -F | awk '{ if($5 > 500) print }' | sort -r -k 64,70
UID PID PPID C SZ RSS PSR STIME TTY TIME CMD
lee 8175 7967 0 965 1036 0 21:51 pts/0 00:00:00 ps -F
lee 7967 7966 0 1173 2104 0 21:38 pts/0 00:00:00 -bash

2.2 Program: Simplify Most Where-Object Filters | 51

This script block can contain a great deal of functionality, if desired. It can combine
multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 10.3, “Write a Script Block.” For more information about the type
of comparisons available to you, see “Comparison Operators” in Appendix A.

For simple filtering, the syntax of the Where-Object cmdlet may sometimes seem
overbearing. The following section, Recipe 2.2, “Program: Simplify Most Where-
Object Filters,” shows a script that can make simple filtering (such as the previous
examples) easier to work with.

For complex filtering (for example, the type you would normally rely on a mouse to
do with files in an Explorer window), writing the script block to express your intent
may be difficult or even infeasible. If this is the case Recipe 2.3, “Program: Interac-
tively Filter Lists of Objects” shows a script that can make manual filtering easier to
accomplish.

For more information about the Where-Object cmdlet, type Get-Help Where-Object.

See Also
• Recipe 2.2, “Program: Simplify Most Where-Object Filters”

• Recipe 2.3, “Program: Interactively Filter Lists of Objects”

• Recipe 10.3, “Write a Script Block”

• “Comparison Operators” in Appendix A

2.2 Program: Simplify Most Where-Object Filters
The Where-Object cmdlet is incredibly powerful, in that it allows you to filter your
output based on arbitrary criteria. For extremely simple filters (such as filtering based
only on a comparison to a single property), though, the syntax can get a little
ungainly:

Get-Process | Where-Object { $_.Handles -gt 1000 }

For this type of situation, it is easy to write a script (as shown in Example 2-3) to off-
load all the syntax to the script itself:

Get-Process | Compare-Property Handles gt 1000
Get-ChildItem | Compare-Property PsIsContainer

With a shorter alias, this becomes even easier to type:

PS >Set-Alias wheres Compare-Property
PS >Get-ChildItem | wheres Length gt 100

Example 2-3 implements this “simple where” functionality. Note that supplying a
non-existing operator as the $operator parameter will generate an error message.

52 | Chapter 2: Pipelines

For more information about running scripts see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

2.3 Program: Interactively Filter Lists of Objects
There are times when the Where-Object cmdlet is too powerful. In those situations,
the Compare-Property script shown in Recipe 2.2, “Program: Simplify Most Where-
Object Filters” provides a much simpler alternative. There are also times when the
Where-Object cmdlet is too simple—when expressing your selection logic as code is
more cumbersome than selecting it manually. In those situations, an interactive filter
can be much more effective.

Example 2-4 implements this interactive filter. It uses several concepts not covered
yet in the book, so feel free to just consider it a neat script for now. To learn more
about a part that you don’t yet understand, look it up in the table of contents or the
index.

Example 2-3. Compare-Property.ps1

##
Compare-Property.ps1
##
Compare the property you provide against the input supplied to the script.
This provides the functionality of simple Where-Object comparisons without
the syntax required for that cmdlet.
##
Example:
Get-Process | Compare-Property Handles gt 1000
dir | Compare-Property PsIsContainer
##
param($property, $operator = "eq", $matchText = "$true")

Begin { $expression = "`$_.$property -$operator `"$matchText`"" }
Process { if(Invoke-Expression $expression) { $_ } }

Example 2-4. Select-FilteredObject.ps1

##
##
Select-FilteredObject.ps1
##
Provides an interactive window to help you select complex sets of objects.
To do this, it takes all the input from the pipeline, and presents it in a
notepad window. Keep any lines that represent objects you want to pass
down the pipeline, delete the rest, then save the file and exit notepad.
##

2.3 Program: Interactively Filter Lists of Objects | 53

The script then passes the original objects that you kept along the
pipeline.
##
Example:
Get-Process | Select-FilteredObject | Stop-Process -WhatIf
##
##

PowerShell runs your "begin" script block before it passes you any of the
items in the pipeline.
begin
{
 ## Create a temporary file
 $filename = [System.IO.Path]::GetTempFileName()

 ## Define a header in a "here-string" that explains how to interact with
 ## the file
 $header = @"
##
Keep any lines that represent objects you want to pass
down the pipeline, and delete the rest.
##
Once you finish selecting objects, save this file and
exit.
##

"@

 ## Place the instructions into the file
 $header > $filename

 ## Initialize the variables that will hold our list of objects, and
 ## a counter to help us keep track of the objects coming down the
 ## pipeline
 $objectList = @()
 $counter = 0
}

PowerShell runs your "process" script block for each item it passes down
the pipeline. In this block, the "$_" variable represents the current
pipeline object
process
{
 ## Add a line to the file, using PowerShell's format (-f) operator.
 ## When provided the ouput of Get-Process, for example, these lines look
 ## like:
 ## 30: System.Diagnostics.Process (powershell)
 "{0}: {1}" -f $counter,$_.ToString() >> $filename

 ## Add the object to the list of objects, and increment our counter.
 $objectList += $_
 $counter++
}

Example 2-4. Select-FilteredObject.ps1 (continued)

54 | Chapter 2: Pipelines

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 2.2, “Program: Simplify Most Where-Object Filters”

2.4 Work with Each Item in a List or Command
Output

Problem
You have a list of items and want to work with each item in that list.

PowerShell runs your "end" script block once it completes passing all
objects down the pipeline.
end
{
 ## Start notepad, then call the process's WaitForExit() method to
 ## pause the script until the user exits notepad.
 $processStartInfo = New-Object System.Diagnostics.ProcessStartInfo "notepad"
 $processStartInfo.Arguments = $filename
 $process = [System.Diagnostics.Process]::Start($processStartInfo)
 $process.WaitForExit()

 ## Go over each line of the file
 foreach($line in (Get-Content $filename))
 {
 ## Check if the line is of the special format: numbers, followed by
 ## a colon, followed by extra text.
 if($line -match "^(\d+?):.*")
 {
 ## If it did match the format, then $matches[1] represents the
 ## number -- a counter into the list of objects we saved during
 ## the "process" section.
 ## So, we output that object from our list of saved objects.
 $objectList[$matches[1]]
 }
 }

 ## Finally, clean up the temporary file.
 Remove-Item $filename
}

Example 2-4. Select-FilteredObject.ps1 (continued)

2.4 Work with Each Item in a List or Command Output | 55

Solution
Use the Foreach-Object cmdlet (which has the standard aliases foreach and %) to
work with each item in a list.

To apply a calculation to each item in a list, use the $_ variable as part of a calcula-
tion in the scriptblock parameter:

PS >1..10 | Foreach-Object { $_ * 2 }
2
4
6
8
10
12
14
16
18
20

To run a program on each file in a directory, use the $_ variable as a parameter to the
program in the script block parameter:

Get-ChildItem *.txt | Foreach-Object { attrib –r $_ }

To access a method or property for each object in a list, access that method or prop-
erty on the $_ variable in the script block parameter. In this example, you get the list
of running processes called notepad, and then wait for each of them to exit:

$notepadProcesses = Get-Process notepad
$notepadProcesses | Foreach-Object { $_.WaitForExit() }

Discussion
Like the Where-Object cmdlet, the Foreach-Object cmdlet runs the script block that
you specify for each item in the input. A script block is a series of PowerShell com-
mands enclosed by the { and } characters. For each item in the set of incoming
objects, PowerShell assigns that item to the $_ variable, one element at a time. In the
examples given by the solution, the $_ variable represents each file or process that the
previous cmdlet generated.

This script block can contain a great deal of functionality, if desired. You can com-
bine multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 10.3, “Write a Script Block.” For more information about the type
of comparisons available to you, see “Comparison Operators” in Appendix A.

The first example in the solution demonstrates a neat way to generate
ranges of numbers:

1..10

This is PowerShell’s array range syntax, which you can learn more
about in Recipe 11.3, “Access Elements of an Array.”

56 | Chapter 2: Pipelines

The Foreach-Object cmdlet isn’t the only way to perform actions on items in a list.
The PowerShell scripting language supports several other keywords, such as for, (a
different) foreach, do, and while. For information on how to use those keywords, see
Recipe 4.4, “Repeat Operations with Loops.”

For more information about the Foreach-Object cmdlet, type Get-Help Foreach-
Object.

For more information about dealing with pipeline input in your own scripts, func-
tions, and script blocks, see Recipe 10.7, “Access Pipeline Input.”

See Also
• Recipe 4.4, “Repeat Operations with Loops”

• Recipe 10.3, “Write a Script Block”

• Recipe 10.7, “Access Pipeline Input”

• Recipe 11.3, “Access Elements of an Array”

• “Comparison Operators” in Appendix A

2.5 Automate Data-Intensive Tasks

Problem
You want to invoke a simple task on large amounts of data.

Solution
If only one piece of data changes (such as a server name or user name), store the data
in a text file. Use the Get-Content cmdlet to retrieve the items, and then use the
Foreach-Object cmdlet (which has the standard aliases foreach and %) to work with
each item in that list. Example 2-5 illustrates this technique.

Example 2-5. Using information from a text file to automate data-intensive tasks

PS >Get-Content servers.txt
SERVER1
SERVER2
PS >$computers = Get-Content servers.txt
PS >$computers | Foreach-Object { Get-WmiObject Win32_OperatingSystem -Computer $_ }

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 2600
Version : 5.1.2600

SystemDirectory : C:\WINDOWS\system32

2.5 Automate Data-Intensive Tasks | 57

If it becomes cumbersome (or unclear) to include the actions in the Foreach-Object
cmdlet, you can also use the foreach scripting keyword as illustrated by Example 2-6.

If several aspects of the data change per task (for example, both the WMI class and
the computer name for computers in a large report), create a CSV file with a row for
each task. Use the Import-Csv cmdlet to import that data into PowerShell, and then
use properties of the resulting objects as multiple sources of related data.
Example 2-7 illustrates this technique.

Organization :
BuildNumber : 2600
Version : 5.1.2600

Example 2-6. Using the foreach scripting keyword to make a looping statement easier to read

$computers = Get-Content servers.txt

foreach($computer in $computers)
{
 ## Get the information about the operating system from WMI
 $system = Get-WmiObject Win32_OperatingSystem -Computer $computer

 ## Determine if it is running Windows XP
 if($system.Version -eq "5.1.2600")
 {
 "$computer is running Windows XP"
 }
}

Example 2-7. Using information from a CSV to automate data-intensive tasks

PS >Get-Content WmiReport.csv
ComputerName,Class
LEE-DESK,Win32_OperatingSystem
LEE-DESK,Win32_Bios
PS >$data = Import-Csv WmiReport.csv
PS >$data

ComputerName Class
------------ -----
LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS >$data |
>> Foreach-Object { Get-WmiObject $_.Class -Computer $_.ComputerName }
>>

SystemDirectory : C:\WINDOWS\system32
Organization :

Example 2-5. Using information from a text file to automate data-intensive tasks (continued)

58 | Chapter 2: Pipelines

Discussion
One of the major benefits of PowerShell is its capability to automate repetitive tasks.
Sometimes, these repetitive tasks are action-intensive (such as system maintenance
through registry and file cleanup) and consist of complex sequences of commands
that will always be invoked together. In those situations, you can write a script to
combine these operations to save time and reduce errors.

Other times, you need only to accomplish a single task (for example, retrieving the
results of a WMI query) but need to invoke that task repeatedly for a large amount of
data. In those situations, PowerShell’s scripting statements, pipeline support, and
data management cmdlets help automate those tasks.

One of the options given by the solution is the Import-Csv cmdlet. The Import-Csv
cmdlet reads a CSV file and, for each row, automatically creates an object with prop-
erties that correspond to the names of the columns. Example 2-8 shows the results of
a CSV that contains a ComputerName and Class header.

As the solution illustrates, you can use the Foreach-Object cmdlet to provide data
from these objects to repetitive cmdlet calls. It does this by specifying each parame-
ter name, followed by the data (taken from a property of the current CSV object) that
applies to it.

While this is the most general solution, many cmdlet parameters can automatically
retrieve their value from incoming objects if any property of that object has the same

BuildNumber : 2600
Version : 5.1.2600

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

Example 2-8. The Import-Csv cmdlet creating objects with ComputerName and Class properties

PS >$data = Import-Csv WmiReport.csv
PS >$data

ComputerName Class
------------ -----
LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS >
PS >$data[0].ComputerName
LEE-DESK

Example 2-7. Using information from a CSV to automate data-intensive tasks (continued)

2.5 Automate Data-Intensive Tasks | 59

name. This can let you to omit the Foreach-Object and property mapping steps alto-
gether. Parameters that support this feature are said to support Value from pipeline
by property name. The Move-Item cmdlet is one example of a cmdlet with parameters
that support this, as shown by the Accept pipeline input rows inExample 2-9.

If you purposefully name the columns in the CSV to correspond to parameters that
take their value from pipeline by property name, PowerShell can do some (or all) of
the parameter mapping for you. Example 2-10 demonstrates a CSV file that moves
items in bulk.

Example 2-9. Help content of the Move-Item showing a parameter that accepts value from pipeline
by property name

PS >Get-Help Move-Item -Full
(...)
PARAMETERS
 -path <string[]>
 Specifies the path to the current location of the items. The default
 is the current directory. Wildcards are permitted.

 Required? true
 Position? 1
 Default value <current location>
 Accept pipeline input? true (ByValue, ByPropertyName)
 Accept wildcard characters? true

 -destination <string>
 Specifies the path to the location where the items are being moved.
 The default is the current directory. Wildcards are permitted, but
 the result must specify a single location.

 To rename the item being moved, specify a new name in the value of
 Destination.

 Required? false
 Position? 2
 Default value <current location>
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? True
(...)

Example 2-10. Using the Import-Csv cmdlet to automate a cmdlet that accepts value from pipeline
by property name

PS >Get-Content ItemMoves.csv
Path,Destination
test.txt,Test1Directory
test2.txt,Test2Directory
PS >dir test.txt,test2.txt | Select Name

Name

60 | Chapter 2: Pipelines

For more information about the Foreach-Object cmdlet and foreach scripting key-
word, see Recipe 2.4, “Work with Each Item in a List or Command Output.” For
more information about working with CSV files, see Recipe 8.6, “Import Structured
Data from a CSV File.” For more information about working with Windows Man-
agement Instrumentation (WMI), see Recipe 15.1, “Access Windows Management
Instrumentation Data.”

See Also
• Recipe 2.4, “Work with Each Item in a List or Command Output”

• Recipe 8.6, “Import Structured Data from a CSV File”

• Recipe 15.1, “Access Windows Management Instrumentation Data”

test.txt
test2.txt

PS >Import-Csv ItemMoves.csv | Move-Item
PS >dir Test1Directory | Select Name

Name

test.txt

PS >dir Test2Directory | Select Name

Name

test2.txt

Example 2-10. Using the Import-Csv cmdlet to automate a cmdlet that accepts value from pipeline
by property name (continued)

61

Chapter 3 CHAPTER 3

Variables and Objects4

3.0 Introduction
As touched on in Chapter 2, Pipelines, PowerShell makes life immensely easier by
keeping information in its native form: objects. Users expend most of their effort in
traditional shells just trying to resuscitate information that the shell converted from
its native form to plain text. Tools have evolved that ease the burden of working with
plain text, but that job is still significantly more difficult than it needs to be.

Since PowerShell builds on Microsoft’s .NET Framework, native information comes
in the form of .NET objects—packages of information, and functionality closely
related to that information.

Let’s say that you want to get a list of running processes on your system. In other
shells, your command (such as tlist.exe or /bin/ps) generates a plain-text report of
the running processes on your system. To work with that output, you send it through
a bevy of text processing tools—if you are lucky enough to have them available.

PowerShell’s Get-Process cmdlet generates a list of the running processes on your
system. In contrast to other shells, though, these are full-fidelity System.Diagnostics.
Process objects straight out of the .NET Framework. The .NET Framework docu-
mentation describes them as objects that “... [provide] access to local and remote pro-
cesses, and [enable] you to start and stop local system processes.” With those objects in
hand, PowerShell makes it trivial for you to access properties of objects (such as their
process name or memory usage) and to access functionality on these objects (such as
stopping them, starting them, or waiting for them to exit).

62 | Chapter 3: Variables and Objects

3.1 Store Information in Variables

Problem
You want to store the output of a pipeline or command for later use, or to work with
it in more detail.

Solution
To store output for later use, store the output of the command in a variable. You can
access this information later, or even pass it down the pipeline as though it was the
output of the original command:

PS >$result = 2 + 2
PS >$result
4
PS >$processes = Get-Process
PS >$processes.Count
85
PS >$processes | Where-Object { $_.ID -eq 0 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Discussion
Variables in PowerShell (and all other scripting and programming languages) let you
store the output of something so that you can use it later. A variable name starts with
a dollar sign ($) and can be followed by nearly any character. A small set of charac-
ters have special meaning to PowerShell, so PowerShell provides a way to make vari-
able names that include even these.

You can store the result of any pipeline or command in a variable to use it later. If
that command generates simple data (such as a number or string), then the variable
contains simple data. If the command generates rich data (such as the objects that
represent system processes from the Get-Process cmdlet), then the variable con-
tains that list of rich data. If the command (such as a traditional executable) gener-
ates plain text (such as the output of traditional executable), then the variable
contains plain text.

If you’ve stored a large amount of data into a variable, but no longer
need that data, assign the value $null (or anything else) to that vari-
able so that PowerShell can release the memory it was using to store
that data.

For more information about the syntax and types of PowerShell variables, see “Vari-
ables” in Appendix A.

3.2 Access Environment Variables | 63

In addition to variables that you create, PowerShell automatically defines several
variables that represent things such as the location of your profile file, the process ID
of PowerShell, and more. For a full list of these automatic variables, see Appendix C,
PowerShell Automatic Variables.

See Also
• “Variables” in Appendix A

• Appendix C, PowerShell Automatic Variables

3.2 Access Environment Variables

Problem
You want to use an environment variable (such as the system path, or current user’s
name) in your script or interactive session.

Solution
PowerShell offers several ways to access environment variables.

To list all environment variables, list the children of the env drive:

Get-ChildItem env:

To get an environment variable using a more concise syntax, precede its name with
$env:

$env:variablename

i.e.: $env:username

To get an environment variable using its Provider path, supply env: or Environment::
to the Get-ChildItem cmdlet:

Get-ChildItem env:variablename
Get-ChildItem Environment::variablename

Discussion
PowerShell provides access to environment variables through its environment
provider. Providers let you work with data stores (such as the registry, environment
variables, and aliases) much as you would access the filesystem.

By default, PowerShell creates a drive (called env) that works with the environment
provider to let you access environment variables. The environment provider lets you
access items in the env: drive as you would any other drive: dir env:\variablename or
dir env:variablename. If you want to access the provider directly (rather than go
through its drive), you can also type dir Environment::variablename.

64 | Chapter 3: Variables and Objects

However, the most common (and easiest) way to work with environment variables is
by typing $env:variablename. This works with any provider but is most typically used
with environment variables.

This is because the environment provider shares something in common with several
other providers—namely support for the *-Content set of core cmdlets (see
Example 3-1).

For providers that support the content cmdlets, PowerShell lets you interact with this
content through a special variable syntax (see Example 3-2).

This variable syntax for content management lets you to both get and set content:

PS >$function:more = { $input | less.exe }
PS >$function:more
$input | less.exe

Now, when it comes to accessing complex provider paths using this method, you’ll
quickly run into naming issues (even if the underlying file exists):

PS >$c:\temp\test.txt
Unexpected token '\temp\test.txt' in expression or statement.
At line:1 char:17
+ $c:\temp\test.txt <<<<

The solution to that lies in PowerShell’s escaping support for complex variable
names. To define a complex variable name, enclose it in braces:

Example 3-1. Working with content on different providers

PS >"hello world" > test
PS >Get-Content c:test
hello world
PS >Get-Content variable:ErrorActionPreference
Continue
PS >Get-Content function:more
param([string[]]$paths); if(($paths -ne $null) -and ($paths.length -ne 0)) { ...
 Get-Content $local:file | Out-Host -p } } else { $input | Out-Host ...
PS >Get-Content env:systemroot
C:\WINDOWS

Example 3-2. Using PowerShell’s special variable syntax to access content

PS >$function:more
param([string[]]$paths); if(($paths -ne $null) -and ($paths.length -ne 0)) { …
 Get-Content $local:file | Out-Host -p } } else { $input | Out-Host …
PS >$variable:ErrorActionPreference
Continue
PS >$c:test
hello world
PS >$env:systemroot
C:\WINDOWS

3.3 Control Access and Scope of Variables and Other Items | 65

PS >${1234123!@#$!@#12!@#$@!} = "Crazy Variable!"
PS >${1234123!@#$!@#12!@#$@!}
Crazy Variable!
PS >dir variable:\1*

Name Value
---- -----
1234123!@#$!@#$12$!@#$@! Crazy Variable!

… and the content equivalent (assuming that the file exists):

PS >${c:\temp\test.txt}
hello world

Since environment variable names do not contain special characters, this Get-Content
variable syntax is the best (and easiest) way to access environment variables.

For more information about working with PowerShell variables, see “Variables” in
Appendix A. For more information about working with environment type Get-Help
About_Environment_Variable.

See Also
• “Variables” in Appendix A

3.3 Control Access and Scope of Variables and Other
Items

Problem
You want to control how you define (or interact with) the visibility of variables,
aliases, functions, and drives.

Solution
PowerShell offers several ways to access variables.

To create a variable with a specific scope, supply that scope before the variable name:

$SCOPE:variable = value

To access a variable at a specific scope, supply that scope before the variable name:

$SCOPE:variable

To create a variable that remains even after the script exits, create it in the GLOBAL scope:

$GLOBAL:variable = value

To change a scriptwide variable from within a function, supply SCRIPT as its scope
name:

$SCRIPT:variable = value

66 | Chapter 3: Variables and Objects

Discussion
PowerShell controls access to variables, functions, aliases, and drives through a
mechanism known as scoping. The scope of an item is another term for its visibility.
You are always in a scope (called the current or local scope), but some actions change
what that means.

When your code enters a nested prompt, script, function, or script block, Power-
Shell creates a new scope. That scope then becomes the local scope. When it does
this, PowerShell remembers the relationship between your old scope and your new
scope. From the view of the new scope, the old scope is called the parent scope. From
the view of the old scope, the new scope is called a child scope. Child scopes get
access to all the variables in the parent scope, but changing those variables in the
child scope doesn’t change the version in the parent scope.

Trying to change a scriptwide variable from a function is often a
“gotcha,” because a function is a new scope. As mentioned previ-
ously, changing something in a child scope (the function) doesn’t
affect the parent scope (the script). The rest of this discussion
describes ways to change the value for the entire script.

When your code exits a nested prompt, script, function, or script block, the oppo-
site happens. PowerShell removes the old scope, then changes the local scope to be
the scope that originally created it—the parent of that old scope.

Some scopes are so common that PowerShell gives them special names:

Global
The outermost scope. Items in the global scope are visible from all other scopes.

Script
The scope that represents the current script. Items in the script scope are visible
from all other scopes in the script.

Local
The current scope.

When you define the scope of an item, PowerShell supports two additional scope
names that act more like options: Private and AllScope. When you define an item
to have a Private scope, PowerShell does not make that item directly available to
child scopes. PowerShell does not hide it from child scopes, though, as child scopes
can still use the -Scope parameter of the Get-Variable cmdlet to get variables from
parent scopes. When you specify the AllScope option for an item (through one of
the *-Variable, *-Alias, or *-Drive cmdlets), child scopes that change the item also
affect the value in parent scopes.

With this background, PowerShell provides several ways for you to control access
and scope of variables and other items.

3.4 Work with .NET Objects | 67

Variables

To define a variable at a specific scope (or access a variable at a specific scope), use
its scope name in the variable reference. For example:

$SCRIPT:myVariable = value

As illustrated in “Variables” in Appendix A, the *-Variable set of cmdlets also allow
you to specify scope names through their –Scope parameter.

Functions

To define a function at a specific scope (or access a function at a specific scope), use
its scope name when creating the function. For example:

function $GLOBAL:MyFunction { ... }
GLOBAL:MyFunction args

Aliases and drives

To define an alias or drive at a specific scope, use the Option parameter of the *-Alias
and *-Drive cmdlets. To access an alias or drive at a specific scope, use the Scope
parameter of the *-Alias and *-Drive cmdlets.

For more information about scopes, type Get-Help About-Scope.

See Also
• “Variables” in Appendix A

3.4 Work with .NET Objects

Problem
You want to use and interact with one of the features that make PowerShell so pow-
erful—its intrinsic support for .NET objects.

Solution
PowerShell offers ways to access methods (both static and instance) and properties.

To call a static method on a class, place the type name in square brackets, and then
separate the class name from the method name with two colons:

[ClassName]::MethodName(parameter list)

To call a method on an object, place a dot between the variable that represents that
object and the method name:

$objectReference.MethodName(parameter list)

68 | Chapter 3: Variables and Objects

To access a static property on a class, place the type name in square brackets, and
then separate the class name from the property name with two colons:

[ClassName]::PropertyName

To access a property on an object, place a dot between the variable that represents
that object and the property name:

$objectReference.PropertyName

Discussion
One feature that gives PowerShell its incredible reach into both system administra-
tion and application development is its capability to leverage Microsoft’s enormous
and broad .NET Framework. The .NET Framework is a large collection of classes.
Each class embodies a specific concept and groups closely related functionality and
information. Working with the .NET Framework is one aspect of PowerShell that
introduces a revolution to the world of management shells.

An example of a class from the .NET Framework is System.Diagnostics.Process—
the grouping of functionality that “provides access to local and remote processes, and
enables you to start and stop local system processes.”

The terms type and class are often used interchangeably.

Classes contain methods (which allow you to perform operations) and properties
(which allow you to access information).

For example, the Get-Process cmdlet generates System.Diagnostics.Process objects,
not a plain-text report like traditional shells. Managing these processes becomes
incredibly easy, as they contain a rich mix of information (properties) and opera-
tions (methods). You no longer have to parse a stream of text for the ID of a pro-
cess—you can just ask the object directly!

PS >$process = Get-Process Notepad
PS >$process.Id
3872

Static methods

[ClassName]::MethodName(parameter list)

Some methods apply only to the concept the class represents. For example, retriev-
ing all running processes on a system relates to the general concept of processes,
instead of a specific process. Methods that apply to the class/type as a whole are
called static methods.

3.4 Work with .NET Objects | 69

For example:

PS >[System.Diagnostics.Process]::GetProcessById(0)

This specific task is better handled by the Get-Process cmdlet, but it demonstrates
PowerShell’s capability to call methods on .NET classes. It calls the static
GetProcessById method on the System.Diagnostics.Process class to get the process
with the ID of 0. This generates the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance methods

$objectReference.MethodName(parameter list)

Some methods relate only to specific, tangible realizations (called instances) of a
class. An example of this would be stopping a process actually running on the sys-
tem, as opposed to the general concept of processes. If $objectReference refers to a
specific System.Diagnostics.Process (as output by the GetProcess cmdlet, for exam-
ple), you may call methods to start it, stop it, or wait for it to exit. Methods that act
on instances of a class are called instance methods.

The term object is often used interchangeably with the term instance.

For example:

PS >$process = GetProcess Notepad
PS >$process.WaitForExit()

Stores the process with an ID of 0 into the $process variable. It then calls the
WaitForExit() instance method on that specific process to pause PowerShell until the
process exits.

To learn about the different sets of parameters (overloads) that a given
method supports, type that method name without any parameters:

PS >$now = Get-Date

PS >$now.AddDays

MemberType : Method

OverloadDefinitions : {System.DateTime AddDays(Double value)}

TypeNameOfValue : System.Management.Automation.PSMethod

Value : System.DateTime AddDays(Double value)

Name : AddDays

IsInstance : True

70 | Chapter 3: Variables and Objects

Static properties

[ClassName]::PropertyName

or

[ClassName]::PropertyName = value

Like static methods, some properties relate only to information about the concept
that the class represents. For example, the System.DateTime class “represents an
instant in time, typically expressed as a date and time of day.” It provides a Now static
property that returns the current time:

PS >[System.DateTime]::Now
Saturday, June 2, 2007 4:57:20 PM

This specific task is better handled by the Get-Date cmdlet, but it demonstrates
PowerShell’s capability to access properties on .NET objects.

Although relatively rare, some types allow you to set the value of some static proper-
ties as well: for example, the [System.Environment]::CurrentDirectory property. This
property represents the process’s current directory—which represents PowerShell’s
startup directory, as opposed to the path you see in your prompt.

Instance properties

$objectReference.PropertyName

or

$objectReference.PropertyName = value

Like instance methods, some properties relate only to specific, tangible realizations
(called instances) of a class. An example of this would be the day of an actual instant
in time, as opposed to the general concept of dates and times. If $objectReference
refers to a specific System.DateTime (as output by the Get-Date cmdlet or [System.
DateTime]::Now, for example), you may want to retrieve its day of week, day, or
month. Properties that return information about instances of a class are called
instance properties.

For example:

PS >$today = Get-Date
PS >$today.DayOfWeek
Saturday

This example stores the current date in the $today variable. It then calls the
DayOfWeek instance property to retrieve the day of the week for that specific date.

With this knowledge, the next questions are: “How do I learn about the functional-
ity available in the .NET Framework?” and “How do I learn what an object does?”

3.5 Create an Instance of a .NET Object | 71

For an answer to the first question, see Appendix E, Selected .NET Classes and Their
Uses for a hand-picked list of the classes in the .NET Framework most useful to sys-
tem administrators. For an answer to the second, see Recipe 3.9, “Learn About
Types and Objects” and Recipe 3.10, “Get Detailed Documentation About Types
and Objects.”

See Also
• Recipe 3.9, “Learn About Types and Objects”

• Recipe 3.10, “Get Detailed Documentation About Types and Objects”

• Appendix E, Selected .NET Classes and Their Uses

3.5 Create an Instance of a .NET Object

Problem
You want to create an instance of a .NET object to interact with its methods and
properties.

Solution
Use the New-Object cmdlet to create an instance of an object.

To create an instance of an object using its default constructor, use the New-Object
cmdlet with the class name as its only parameter:

PS >$generator = New-Object System.Random
PS >$generator.NextDouble()
0.853699042859347

To create an instance of an object that takes parameters for its constructor, supply
those parameters to the New-Object cmdlet. In some instances, the class may exist in
a separate library not loaded in PowerShell by default, such as the System.Windows.
Forms assembly. In that case, you must first load the assembly that contains the class:

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")
$image = New-Object System.Drawing.Bitmap source.gif
$image.Save("source_converted.jpg","JPEG")

To create an object and use it at the same time (without saving it for later), wrap the
call to New-Object in parentheses:

PS >(New-Object Net.WebClient).DownloadString("http://live.com")

Discussion
Many cmdlets (such as Get-Process and Get-ChildItem) generate live .NET objects
that represent tangible processes, files, and directories. However, PowerShell supports
much more of the .NET Framework than just the objects that its cmdlets produce.

72 | Chapter 3: Variables and Objects

These additional areas of the .NET Framework supply a huge amount of functionality
that you can use in your scripts and general system administration tasks.

When it comes to using most of these classes, the first step is often to create an
instance of the class, store that instance in a variable, and then work with the meth-
ods and properties on that instance. To create an instance of a class, you use the New-
Object cmdlet. The first parameter to the New-Object cmdlet is the type name, and
the second parameter is the list of arguments to the constructor, if it takes any. The
New-Object cmdlet supports PowerShell’s type shortcuts, so you never have to use the
fully qualified type name. For more information about type shortcuts, see Recipe 3.4,
“Work with .NET Objects.”

Since the second parameter to the New-Object cmdlet is an array of parameters to the
type’s constructor, you might encounter difficulty when trying to specify a parame-
ter that itself is a list. Assuming $byte is an array of bytes:

PS >$memoryStream = New-Object System.IO.MemoryStream $bytes
New-Object : Cannot find an overload for ".ctor" and the argument count: "11".
At line:1 char:27
+ $memoryStream = New-Object <<<< System.IO.MemoryStream $bytes

To solve this, provide an array that contains an array:

PS >$parameters = ,$bytes
PS >$memoryStream = New-Object System.IO.MemoryStream $parameters

or

PS >$memoryStream = New-Object System.IO.MemoryStream @(,$bytes)

Load types from another assembly

PowerShell makes most common types available by default. However, many are
available only after you load the library (called the assembly) that defines them. The
MSDN documentation for a class includes the assembly that defines it.

To load an assembly, use the methods provided by the System.Reflection.Assembly
class:

PS >[Reflection.Assembly]::LoadWithPartialName("System.Web")

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_32\(…)\System.Web.dll

PS >[Web.HttpUtility]::UrlEncode("http://search.msn.com")
http%3a%2f%2fsearch.msn.com

3.6 Program: Create Instances of Generic Objects | 73

The LoadWithPartialName method is unsuitable for scripts that you
want to share with others or use in a production environment. It loads
the most current version of the assembly, which may not be the same
as the version you used to develop your script. To load an assembly in
the safest way possible, use its fully qualified name with the
[Reflection.Assembly]::Load() method.

For a hand-picked list of the classes in the .NET Framework most useful to system
administrators, see Appendix E, Selected .NET Classes and Their Uses. To learn more
about the functionality that a class supports, see Recipe 3.9, “Learn About Types and
Objects.”

For more information about the New-Object cmdlet, type Get-Help New-Object.

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 3.9, “Learn About Types and Objects”

• Appendix E, Selected .NET Classes and Their Uses

3.6 Program: Create Instances of Generic Objects
When you work with the .NET Framework, you’ll often run across classes that have
the primary responsibility of managing other objects. For example, the System.
Collections.ArrayList class lets you manage a dynamic list of objects. You can add
objects to an ArrayList, remove objects from it, sort the objects inside, and more.
These objects can be any type of object—String objects, integers, DateTime objects,
and many more. However, working with classes that support arbitrary objects can
sometimes be a little awkward. One example is type safety: if you accidentally add a
String to a list of integers, you might not find out until your program fails.

Although the issue becomes largely moot when working only inside PowerShell, a
more common complaint in strongly typed languages (such as C#) is that you have
to remind the environment (through explicit casts) about the type of your object
when you work with it again:

// This is C# code
System.Collections.ArrayList list =
 new System.Collections.ArrayList();
list.Add("Hello World");

string result = (String) list[0];

To address these problems, the .NET Framework introduced a feature called generic
types: classes that support arbitrary types of objects, but allow you to specify which
type of object. In this case, a collection of strings:

74 | Chapter 3: Variables and Objects

// This is C# code
System.Collections.ObjectModel.Collection<String> list =
 new System.Collections.ObjectModel.Collection<String>();
list.Add("Hello World");

string result = list[0];

Although the New-Object cmdlet is powerful, it doesn’t yet handle creating generic
types very elegantly. For a simple generic type, you can use the syntax that the .NET
Framework uses under the hood:

$coll = New-Object 'System.Collections.ObjectModel.Collection`1[System.String]'

However, that begins to fall apart if you want to use types defined outside the main
mscorlib assembly, or want to create complex generic types (for example, ones that
refer to other generic types).

Example 3-3 lets you to easily create instances of generic types.

3.7 Reduce Typing for Long Class Names

Problem
You want to reduce the amount of redundant information in your script when you
interact with classes that have long type names.

Example 3-3. New-GenericObject.ps1

##
##
New-GenericObject.ps1
##
Creates an object of a generic type:
##
Usage:
##
Simple generic collection
New-GenericObject System.Collections.ObjectModel.Collection System.Int32
##
Generic dictionary with two types
New-GenericObject System.Collections.Generic.Dictionary `
System.String,System.Int32
##
Generic list as the second type to a generic dictionary
$secondType = New-GenericObject System.Collections.Generic.List Int32
New-GenericObject System.Collections.Dictionary `
System.String,$secondType.GetType()
##
Generic type with a non-default constructor
New-GenericObject System.Collections.Generic.LinkedListNode `
System.String "Hi"
##
##

3.7 Reduce Typing for Long Class Names | 75

Solution
To reduce typing for static methods, store the type name in a variable:

$math = [System.Math]
$math::Min(1,10)
$math::Max(1,10)

To reduce typing for multiple objects in a namespace, use the -f (format) operator:

$namespace = "System.Collections.{0}"
$arrayList = New-Object ($namespace -f "ArrayList")
$queue = New-Object ($namespace -f "Queue")

To reduce typing for static methods of multiple types in a namespace, use the -f
(format) operator along with a cast:

$namespace = "System.Diagnostics.{0}"
([Type] ($namespace -f "EventLog"))::GetEventLogs()
([Type] ($namespace -f "Process"))::GetCurrentProcess()

Discussion
One thing you will notice when working with some .NET classes (or classes from a
third-party SDK), is that it quickly becomes tiresome to specify their fully qualified
type names. For example, many useful collection classes in the .NET Framework all
start with "System.Collections". This is called the namespace of that class. Most pro-
gramming languages solve this problem with a using directive that lets you to specify
a list of namespaces for that language to search when you type a plain class name
such as "ArrayList". PowerShell lacks a using directive, but there are several options
to get the benefits of one.

If you are repeatedly working with static methods on a specific type, you can store
that type in a variable to reduce typing as shown in the solution:

$math = [System.Math]
$math::Min(1,10)
$math::Max(1,10)

If you are creating instances of different classes from a namespace, you can store the
namespace in a variable and then use the PowerShell -f (format) operator to specify
the unique class name:

$namespace = "System.Collections.{0}"
$arrayList = New-Object ($namespace -f "ArrayList")
$queue = New-Object ($namespace -f "Queue")

If you are working with static methods from several types in a namespace, you can
store the namespace in a variable, use the -f (format) operator to specify the unique
class name, and then finally cast that into a type:

$namespace = "System.Diagnostics.{0}"
([Type] ($namespace -f "EventLog"))::GetEventLogs()
([Type] ($namespace -f "Process"))::GetCurrentProcess()

76 | Chapter 3: Variables and Objects

For more information about PowerShell’s format operator, see Recipe 5.6, “Place
Formatted Information in a String.”

See Also
• Recipe 5.6, “Place Formatted Information in a String”

3.8 Use a COM Object

Problem
You want to create a COM object to interact with its methods and properties.

Solution
Use the New-Object cmdlet (with the –ComObject parameter) to create a COM object
from its ProgID. You can then interact with the methods and properties of the COM
object as you would any other object in PowerShell.

$object = New-Object -ComObject ProgId

For example:

PS >$sapi = New-Object -Com Sapi.SpVoice
PS >$sapi.Speak("Hello World")

Discussion
Historically, many applications have exposed their scripting and administration inter-
faces as COM objects. While .NET APIs (and PowerShell cmdlets) are becoming
more common, interacting with COM objects is still a common administrative task.

As with classes in the .NET Framework, it is difficult to know what COM objects
you can use to help you accomplish your system administration tasks. For a hand-
picked list of the COM objects most useful to system administrators, see
Appendix G, Selected COM Objects and Their Uses.

For more information about the New-Object cmdlet, type Get-Help New-Object.

See Also
• Appendix G, Selected COM Objects and Their Uses

3.9 Learn About Types and Objects | 77

3.9 Learn About Types and Objects

Problem
You have an instance of an object and want to know what methods and properties it
supports.

Solution
The most common way to explore the methods and properties supported by an
object is through the Get-Member cmdlet.

To get the instance members of an object you’ve stored in the $object variable, pipe
it to the Get-Member cmdlet:

$object | Get-Member
Get-Member –InputObject $object

To get the static members of an object you’ve stored in the $object variable, supply
the –Static flag to the Get-Member cmdlet:

$object | Get-Member –Static
Get-Member –Static –InputObject $object

To get the static members of a specific type, pipe that type to the Get-Member cmdlet,
and also specify the –Static flag:

[Type] | Get-Member –Static
Get-Member –InputObject [Type]

To get members of the specified member type (for example, Method, Property) from
an object you have stored in the $object variable, supply that member type to the
–MemberType parameter:

$object | Get-Member –MemberType memberType
Get-Member –MemberType memberType –InputObject $object

Discussion
The Get-Member cmdlet is one of the three commands you will use most commonly as
you explore Windows PowerShell. The other two commands are Get-Command and
Get-Help.

If you pass the Get-Member cmdlet a collection of objects (such as an Array or
ArrayList) through the pipeline, PowerShell extracts each item from the collection,
and then passes them to the Get-Member cmdlet one-by-one. The Get-Member cmdlet
then returns the members of each unique type that it receives. Although helpful the
vast majority of the time, this sometimes causes difficulty when you want to learn
about the members or properties of the collection class itself.

If you want to see the properties of a collection (as opposed to the elements it con-
tains,) provide the collection to the –InputObject parameter, instead. Alternatively,

78 | Chapter 3: Variables and Objects

you may wrap the collection in an array (using PowerShell’s unary comma operator)
so that the collection class remains when the Get-Member cmdlet unravels the outer
array:

PS >$files = Get-ChildItem
PS >,$files | Get-Member

 TypeName: System.Object[]

Name MemberType Definition
---- ---------- ----------
Count AliasProperty Count = Length
Address Method System.Object& Address(Int32)
(...)

For another way to learn detailed information about types and objects, see the fol-
lowing section, Recipe 3.10, “Get Detailed Documentation About Types and
Objects.”

For more information about the Get-Member cmdlet, type Get-Help Get-Member.

See Also
• Recipe 3.10, “Get Detailed Documentation About Types and Objects”

3.10 Get Detailed Documentation About Types and
Objects

Problem
You have a type of object and want to know detailed information about the methods
and properties it supports.

Solution
The documentation for the .NET Framework (available on http://msdn.microsoft.
com) is the best way to get detailed documentation about the methods and proper-
ties supported by an object. That exploration generally comes in two stages:

1. Find the type of the object.

To determine the type of an object, you can use either the type name shown by the
Get-Member cmdlet (as described in Recipe 3.9, “Learn About Types and Objects”),
or call the GetType() method of an object (if you have an instance of it):

PS >$date = Get-Date
PS >$date.GetType().ToString()
System.DateTime

2. Enter that type name into the search box at http://msdn.microsoft.com.

3.10 Get Detailed Documentation About Types and Objects | 79

Discussion
When the Get-Member cmdlet does not provide the information you need, the MSDN
documentation for a type is a great alternative. It provides much more detailed infor-
mation than the help offered by the Get-Member cmdlet—usually including detailed
descriptions, related information, and even code samples. MSDN documentation
focuses on developers using these types through a language such as C#, though, so
you may find interpreting the information for use in PowerShell to be a little difficult
at first.

Typically, the documentation for a class first starts with a general overview, and then
provides a hyperlink to the members of the class—the list of methods and properties
it supports.

To get to the documentation for the members quickly, search for them
more explicitly by adding the term “members” to your MSDN search
term:

typename members

Documentation for the members of a class lists its methods and properties, as does
the output of the Get-Member cmdlet. The S icon represents static methods and prop-
erties. Click the member name for more information about that method or property.

Public constructors

This section lists the constructors of the type. You use a constructor when you cre-
ate the type through the New-Object cmdlet. When you click on a constructor, the
documentation provides all the different ways that you can create that object, includ-
ing the parameter list that you will use with the New-Object cmdlet.

Public fields/public properties

This section lists the names of the fields and properties of an object. The S icon rep-
resents a static field or property. When you click on a field or property, the docu-
mentation also provides the type returned by this field or property.

For example, you might see the following in the definition for System.DateTime.Now:

C#
public static DateTime Now { get; }

Public means that the Now property is public—that everybody can access it. Static
means that the property is static (as described in Recipe 3.4, “Work with .NET
Objects”). DateTime means that the property returns a DateTime object when you call
it. Get; means that you can get information from this property but cannot set the
information. Many properties support a Set; as well (such as the IsReadOnly prop-
erty on System.IO.FileInfo), which means that you can change its value.

80 | Chapter 3: Variables and Objects

Public methods

This section lists the names of the methods of an object. The S icon represents a
static method. When you click on a method, the documentation provides all the dif-
ferent ways that you can call that method, including the parameter list that you will
use to call that method in PowerShell.

For example, you might see the following in the definition for System.DateTime.
AddDays():

C#
public DateTime AddDays (
 double value
)

Public means that the AddDays method is public—that everybody can access it.
DateTime means that the method returns a DateTime object when you call it. The text,
double value, means that this method requires a parameter (of type double). In this
case, that parameter determines the number of days to add to the DateTime object on
which you call the method.

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 3.9, “Learn About Types and Objects”

3.11 Add Custom Methods and Properties to Objects

Problem
You have an object and want to add your own custom properties or methods
(members) to that object.

Solution
Use the Add-Member cmdlet to add custom members to an object.

Discussion
The Add-Member cmdlet is extremely useful in helping you add custom members to
individual objects. For example, imagine that you want to create a report from the
files in the current directory, and that report should include each file’s owner. The
Owner property is not standard on the objects that Get-ChildItem produces, but you
could write a small script to add them, as shown in Example 3-4.

3.11 Add Custom Methods and Properties to Objects | 81

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

Although it is most common to add static information (such as a NoteProperty),
the Add-Member cmdlet supports several other property and method types—includ-
ing AliasProperty, ScriptProperty, CodeProperty, CodeMethod, and ScriptMethod.
For a more detailed description of these other property types, see “Working with
the .NET Framework” in Appendix A, as well as the help documentation for the
Add-Member cmdlet.

Although the Add-Member cmdlet lets you to customize specific objects, it does not let
you to customize all objects of that type. For information on how to do that, see the
following section Recipe 3.12, “Add Custom Methods and Properties to Types.”

Calculated properties

Calculated properties are another useful way to add information to output objects. If
your script or command uses a Format-Table or Select-Object command to generate
its output, you can create additional properties by providing an expression that gen-
erates their value. For example:

Get-ChildItem |
 Select-Object Name,
 @{Name="Size (MB)"; Expression={ "{0,8:0.00}" -f ($_.Length / 1MB) } }

In this command, we get the list of files in the directory. We use the Select-Object
command to retrieve its name and a calculated property called Size (MB). This calcu-
lated property returns the size of the file in megabytes, rather than the default (which
is bytes).

Example 3-4. A script that adds custom properties to its output of file objects

##
Get-OwnerReport.ps1
##
Gets a list of files in the current directory, but with their owner added
to the resulting objects.
##
Example:
Get-OwnerReport
Get-OwnerReport | Format-Table Name,LastWriteTime,Owner
##

$files = Get-ChildItem
foreach($file in $files)
{
 $owner = (Get-Acl $file).Owner
 $file | Add-Member NoteProperty Owner $owner
 $file
}

82 | Chapter 3: Variables and Objects

For more information about the Add-Member cmdlet, type Get-Help Add-Member.

For more information about adding calculated properties, type Get-Help Select-
Object or Get-Help Format-Table.

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 3.12, “Add Custom Methods and Properties to Types

• “Working with the .NET Framework” in Appendix A

3.12 Add Custom Methods and Properties to Types

Problem
You want to add your own custom properties or methods to all objects of a certain
type.

Solution
Use custom type extension files to add custom members to all objects of a type.

Discussion
Although the Add-Member cmdlet is extremely useful in helping you add custom mem-
bers to individual objects, it requires that you add the members to each object that
you want to interact with. It does not allow you to automatically add them to all
objects of that type. For that purpose, PowerShell supports another mechanism—
custom type extension files.

Type extensions are simple XML files that PowerShell interprets. They let you (as the
administrator of the system) easily add your own features to any type exposed by the
system. If you write code (for example, a script or function) that primarily interacts
with a single type of object, then that code might be better suited as an extension to
the type instead.

Since type extension files are XML files, make sure that your customi-
zations properly encode the characters that have special meaning in
XML files—such as <, >, and &.

For example, imagine a script that returns the free disk space on a given drive. That
might be helpful as a script, but you might find it easier to instead make Power-
Shell’s PsDrive objects themselves tell you how much free space they have left.

3.12 Add Custom Methods and Properties to Types | 83

Getting started

If you haven’t already, the first step in creating a types extension file is to create an
empty one. The best location for this is probably in the same directory as your cus-
tom profile, with the name Types.Custom.ps1xml, as shown in Example 3-5.

Next, add a few lines to your PowerShell profile so that PowerShell loads your type
extensions during startup:

$typeFile = (Join-Path (Split-Path $profile) "Types.Custom.ps1xml")
Update-TypeData -PrependPath $typeFile

By default, PowerShell loads several type extensions from the Types.ps1xml file in Pow-
erShell’s installation directory. The Update-TypeData cmdlet tells PowerShell to also
look in your Types.Custom.ps1xml file for extensions. The -PrependPath para-meter
makes PowerShell favor your extensions over the built-in ones in case of conflict.

Once you have a custom types file to work with, adding functionality becomes rela-
tively straightforward. As a theme, these examples do exactly what we alluded to ear-
lier: add functionality to PowerShell’s PsDrive type.

To support this, you need to extend your custom types file so that it defines addi-
tions to the System.Management.Automation.PSDriveInfo type, as shown in
Example 3-6. The System.Management.Automation.PSDriveInfo type is the type that
the Get-PsDrive cmdlet generates.

Add a ScriptProperty

A ScriptProperty lets you to add properties (that get and set information) to types,
using PowerShell script as the extension language. It consists of three child ele-
ments: the Name of the property, the Getter of the property (via the GetScriptBlock
child), and the Setter of the property (via the SetScriptBlock child).

Example 3-5. Sample Types.Custom.ps1xml file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
</Types>

Example 3-6. A template for changes to a custom types file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
 <Type>
 <Name>System.Management.Automation.PSDriveInfo</Name>
 <Members>

add members such as <ScriptProperty> here
 </Members>
 </Type>
</Types>

84 | Chapter 3: Variables and Objects

In both the GetScriptBlock and SetScriptBlock sections, the $this variable refers
to the current object being extended. In the SetScriptBlock section, the $args[0]
variable represents the value that the user supplied as the right-hand side of the
assignment.

Example 3-7 adds an AvailableFreeSpace ScriptProperty to PSDriveInfo, and should
be placed within the members section of the template given in Example 3-6. When
you access the property, it returns the amount of free space remaining on the drive.
When you set the property, it outputs what changes you must make to obtain that
amount of free space.

Example 3-7. A ScriptProperty for the PSDriveInfo type

 <ScriptProperty>
 <Name>AvailableFreeSpace</Name>
 <GetScriptBlock>
 ## Ensure that this is a FileSystem drive
 if($this.Provider.ImplementingType -eq
 [Microsoft.PowerShell.Commands.FileSystemProvider])
 {
 ## Also ensure that it is a local drive
 $driveRoot = $this.Root
 $fileZone = [System.Security.Policy.Zone]::CreateFromUrl(`
 $driveRoot).SecurityZone
 if($fileZone -eq "MyComputer")
 {
 $drive = New-Object System.IO.DriveInfo $driveRoot
 $drive.AvailableFreeSpace
 }
 }
 </GetScriptBlock>
 <SetScriptBlock>
 ## Get the available free space
 $availableFreeSpace = $this.AvailableFreeSpace

 ## Find out the difference between what is available, and what they
 ## asked for.
 $spaceDifference = (([long] $args[0]) - $availableFreeSpace) / 1MB

 ## If they want more free space than they have, give that message
 if($spaceDifference -gt 0)
 {
 $message = "To obtain $args bytes of free space, " +
 " free $spaceDifference megabytes."
 Write-Host $message
 }
 ## If they want less free space than they have, give that message
 else
 {
 $spaceDifference = $spaceDifference * -1

 $message = "To obtain $args bytes of free space, " +

3.12 Add Custom Methods and Properties to Types | 85

Add an AliasProperty

An AliasProperty gives an alternative name (alias) for a property. The referenced
property does not need to exist when PowerShell processes your type extension file,
since you (or another script) might later add the property through mechanisms such
as the Add-Member cmdlet.

Example 3-8 adds a Free AliasProperty to PSDriveInfo, and should also be placed
within the members section of the template given in Example 3-6. When you access
the property, it returns the value of the AvailableFreeSpace property. When you set
the property, it sets the value of the AvailableFreeSpace property.

Add a ScriptMethod

A ScriptMethod allows you to define an action on an object, using PowerShell script
as the extension language. It consists of two child elements: the Name of the property
and the Script.

In the script element, the $this variable refers to the current object you are extend-
ing. Like a standalone script, the $args variable represents the arguments to the
method. Unlike standalone scripts, ScriptMethods do not support the param state-
ment for parameters.

Example 3-9 adds a Remove ScriptMethod to PSDriveInfo. Like the other additions,
place these customizations within the members section of the template given in
Example 3-6. When you call this method with no arguments, the method simulates
removing the drive (through the -WhatIf option to Remove-PsDrive). If you call this
method with $true as the first argument, it actually removes the drive from the
PowerShell session.

 " use up $spaceDifference more megabytes."
 Write-Host $message
 }
 </SetScriptBlock>
 </ScriptProperty>

Example 3-8. An AliasProperty for the PSDriveInfo type

 <AliasProperty>
 <Name>Free</Name>
 <ReferencedMemberName>AvailableFreeSpace</ReferencedMemberName>
 </AliasProperty>

Example 3-9. A ScriptMethod for the PSDriveInfo type

 <ScriptMethod>
 <Name>Remove</Name>
 <Script>
 $force = [bool] $args[0]

Example 3-7. A ScriptProperty for the PSDriveInfo type (continued)

86 | Chapter 3: Variables and Objects

Add other extension points

PowerShell supports several additional features in the types extension file, including
CodeProperty, NoteProperty, CodeMethod, and MemberSet. Although not generally use-
ful to end users, developers of PowerShell providers and cmdlets will find these fea-
tures helpful. For more information about these additional features, see the
Windows PowerShell SDK, or MSDN documentation.

 ## Remove the drive if they use $true as the first parameter
 if($force)
 {
 $this | Remove-PSDrive
 }
 ## Otherwise, simulate the drive removal
 else
 {
 $this | Remove-PSDrive -WhatIf
 }
 </Script>
 </ScriptMethod>

Example 3-9. A ScriptMethod for the PSDriveInfo type (continued)

87

Chapter 4 CHAPTER 4

Looping and Flow Control5

4.0 Introduction
As you begin to write scripts or commands that interact with unknown data, the
concepts of looping and flow control become increasingly important.

PowerShell’s looping statements and commands let you perform an operation (or set
of operations) without having to repeat the commands themselves. This includes, for
example, doing something a specified number of times, processing each item in a col-
lection, or working until a certain condition comes to pass.

PowerShell’s flow control and comparison statements let you to adapt your script or
command to unknown data. They let you execute commands based on the value of
that data, skip commands based on the value of that data, and more.

Together, looping and flow control statements add significant versatility to your
PowerShell toolbox.

4.1 Make Decisions with Comparison and Logical
Operators

Problem
You want to compare some data with other data and make a decision based on that
comparison.

Solution
Use PowerShell’s logical operators to compare pieces of data and make decisions
based on them.

88 | Chapter 4: Looping and Flow Control

Comparison operators:
-eq, -ne, -ge, -gt, -lt, -le, -like, -notlike, -match, -notmatch, -contains,
-notcontains, -is, -isnot

Logical operators:
-and, -or, -xor, -not

For a detailed description (and examples) of these operators, see “Comparison Oper-
ators” in Appendix A.

Discussion
PowerShell’s logical and comparison operators let you compare pieces of data, or test
data for some condition. An operator either compares two pieces of data (a binary
operator) or tests one piece of data (a unary operator). All comparison operators are
binary operators (they compare two pieces of data), as are most of the logical opera-
tors. The only unary logical operator is the -not operator, which returns the true/
false opposite of the data that it tests.

Comparison operators compare two pieces of data and return a result that depends
on the specific comparison operator. For example, you might want to check whether
a collection has at least a certain number of elements:

PS >(dir).Count -ge 4
True

or, check whether a string matches a given regular expression:

PS >"Hello World" -match "H.*World"
True

Most comparison operators also adapt to the type of their input. For example, when
you apply them to simple data such as a string, the -like and -match comparison
operators determine whether the string matches the specified pattern. When you
apply them to a collection of simple data, those same comparison operators return
all elements in that collection that match the pattern you provide.

The -match operator takes a regular expression as its argument. One of
the more common regular expression symbols is the $ character,
which represents the end of line. The $ character also represents the
start of a PowerShell variable, though! To prevent PowerShell from
interpreting characters as language terms or escape sequences, place
the string in single quotes rather than double quotes:

PS >"Hello World" -match "Hello"

True

PS >"Hello World" -match 'Hello$'

False

For a detailed description of how the individual comparison operators adapt to their
input, see “Comparison Operators” in Appendix A.

4.2 Adjust Script Flow Using Conditional Statements | 89

Logical operators combine true or false statements and return a result that depends
on the specific logical operator. For example, you might want to check whether a
string matches the wildcard pattern you supply, and that it is longer than a certain
number of characters:

PS >$data = "Hello World"
PS >($data -like "*llo W*") -and ($data.Length -gt 10)
True
PS >($data -like "*llo W*") -and ($data.Length -gt 20)
False

Some of the comparison operators actually incorporate aspects of the logical opera-
tors. Since using the opposite of a comparison (such as -like) is so common, Power-
Shell provides comparison operators (such as -notlike) that save you from having to
use the -not operator explicitly.

For a detailed description of the individual logical operators, see “Comparison Oper-
ators” in Appendix A.

Comparison operators and logical operators (when combined with flow control
statements) form the core of how we write a script or command that adapts to its
data and input.

See also “Conditional Statements” in Appendix A, for detailed information about
these statements.

For more information about PowerShell’s operators, type Get-Help About_Operator.

See Also
• “Comparison Operators” in Appendix A

• “Conditional Statements” in Appendix A

4.2 Adjust Script Flow Using Conditional Statements

Problem
You want to control the conditions under which PowerShell executes commands or
portions of your script.

Solution
Use PowerShell’s if, elseif, and else conditional statements to control the flow of
execution in your script.

For example:

$temperature = 90

if($temperature -le 0)

90 | Chapter 4: Looping and Flow Control

{
 "Balmy Canadian Summer"
}
elseif($temperature -le 32)
{
 "Freezing"
}
elseif($temperature -le 50)
{
 "Cold"
}
elseif($temperature -le 70)
{
 "Warm"
}
else
{
 "Hot"
}

Discussion
Conditional statements include the following:

if statement
Executes the script block that follows it if its condition evaluates to true

elseif statement
Executes the script block that follows it if its condition evaluates to true, and
none of the conditions in the if or elseif statements before it evaluate to true

else statement
Executes the script block that follows it if none of the conditions in the if or
elseif statements before it evaluate to true

For more information about these flow control statements, type Get-Help About_
Flow_Control.

4.3 Manage Large Conditional Statements with
Switches

Problem
You want to find an easier or more compact way to represent a large if ... elseif ...
else conditional statement.

Solution
Use PowerShell’s switch statement to more easily represent a large if ... elseif ...
else conditional statement.

4.4 Repeat Operations with Loops | 91

For example:

$temperature = 20

switch($temperature)
{
 { $_ -lt 32 } { "Below Freezing"; break }
 32 { "Exactly Freezing"; break }
 { $_ -le 50 } { "Cold"; break }
 { $_ -le 70 } { "Warm"; break }
 default { "Hot" }
}

Discussion
PowerShell’s switch statement lets you easily test its input against a large number of
comparisons. The switch statement supports several options that allow you to con-
figure how PowerShell compares the input against the conditions—such as with a
wildcard, regular expression, or even arbitrary script block. Since scanning through
the text in a file is such a common task, PowerShell’s switch statement supports that
directly. These additions make PowerShell switch statements a great deal more pow-
erful than those in C and C++.

Although used as a way to express large conditional statements more cleanly, a
switch statement operates much like a large sequence of if statements, as opposed to
a large sequence of if ... elseif ... elseif ... else statements. Given the input that
you provide, PowerShell evaluates that input against each of the comparisons in the
switch statement. If the comparison evaluates to true, PowerShell then executes the
script block that follows it. Unless that script block contains a break statement,
PowerShell continues to evaluate the following comparisons.

For more information about PowerShell’s switch statement, see “Conditional State-
ments” in Appendix A or type Get-Help About_Switch.

See Also
• “Conditional Statements” in Appendix A

4.4 Repeat Operations with Loops

Problem
You want to execute the same block of code more than once.

Solution
Use one of PowerShell’s looping statements (for, foreach, while, and do), or Power-
Shell’s Foreach-Object cmdlet to run a command or script block more than once. For

92 | Chapter 4: Looping and Flow Control

a detailed description of these looping statements, see “Looping Statements” in
Appendix A. For example:

for loop
for($counter = 1; $counter -le 10; $counter++)
{
 "Loop number $counter"
}

foreach loop
foreach($file in dir)
{
 "File length: " + $file.Length
}

Foreach-Object cmdlet
Get-ChildItem | Foreach-Object { "File length: " + $_.Length }

while loop
$response = ""
while($response -ne "QUIT")
{
 $response = Read-Host "Type something"
}

do..while loop
$response = ""
do
{
 $response = Read-Host "Type something"
} while($response -ne "QUIT")

Discussion
Although any of the looping statements can be written to be functionally equivalent
to any of the others, each lends itself to certain problems.

You usually use a for loop when you need to perform an operation an exact number
of times. Because using it this way is so common, it is often called a counted for loop.

You usually use a foreach loop when you have a collection of objects and want to
visit each item in that collection. If you do not yet have that entire collection in mem-
ory (as in the dir collection from the foreach example above), the Foreach-Object
cmdlet is usually a more efficient alternative.

Unlike the foreach loop, the Foreach-Object cmdlet allows you to process each ele-
ment in the collection as PowerShell generates it. This is an important distinction;
asking PowerShell to collect the entire output of a large command (such as Get-
Content hugefile.txt) in a foreach loop can easily drag down your system.

4.5 Add a Pause or Delay | 93

A handy shortcut to repeat an operation on the command line is:

PS >1..10 | foreach { "Working" }

Working

Working

Working

Working

Working

Working

Working

Working

Working

Working

The while and do..while loops are similar, in that they continue to execute the loop
as long as its condition evaluates to true. A while loop checks for this before ever
running your script block, while a do..while loop checks the condition after running
your script block.

For a detailed description of these looping statements, see “Looping Statements” in
Appendix A or type Get-Help About_For or type Get-Help About_Foreach.

See Also
• “Looping Statements” in Appendix A

4.5 Add a Pause or Delay

Problem
You want to pause or delay your script or command.

Solution
To pause until the user presses ENTER, use the Read-Host cmdlet:

PS >Read-Host "Press ENTER"
Press ENTER:

To pause until the user presses a key, use the ReadKey() method on the $host object:

PS >$host.UI.RawUI.ReadKey()

To pause a script for a given amount of time, use the Start-Sleep cmdlet:

PS >Start-Sleep 5
PS >Start-Sleep -Milliseconds 300

94 | Chapter 4: Looping and Flow Control

Discussion
When you want to pause your script until the user presses a key or for a set amount
of time, the Read-Host and Start-Sleep cmdlets are the two you are most likely to
use. For more information about using the Read-Host cmdlet to read input from the
user, see Recipe 12.1, “Read a Line of User Input.” In other situations, you may
sometimes want to write a loop in your script that runs at a constant speed—such as
once per minute, or 30 times per second. That is typically a difficult task, as the com-
mands in the loop might take up a significant amount of time, or even an inconsis-
tent amount of time.

In the past, many computer games suffered from solving this problem incorrectly. To
control their game speed, game developers added commands to slow down their
game. For example, after much tweaking and fiddling, the developers might realize
that the game plays correctly on a typical machine if they make the computer count
to one million every time it updates the screen. Unfortunately, these commands
(such as counting) depend heavily on the speed of the computer. Since a fast com-
puter can count to 1 million much more quickly than a slow computer, the game
ends up running much quicker (often to the point of incomprehensibility) on faster
computers!

To make your loop run at a regular speed, you can measure how long the com-
mands in a loop take to complete, and then delay for whatever time is left, as shown
in Example 4-1.

For more information about the Start-Sleep cmdlet, type Get-Help Start-Sleep.

See Also
• Recipe 12.1, “Read a Line of User Input

Example 4-1. Running a loop at a constant speed

$loopDelayMilliseconds = 650
while($true)
{
 $startTime = Get-Date

 ## Do commands here
 "Executing"

 $endTime = Get-Date
 $loopLength = ($endTime - $startTime).TotalMilliseconds
 $timeRemaining = $loopDelayMilliseconds - $loopLength

 if($timeRemaining -gt 0)
 {
 Start-Sleep -Milliseconds $timeRemaining
 }
}

95

Chapter 5 CHAPTER 5

Strings and Unstructured Text6

5.0 Introduction
Creating and manipulating text has long been one of the primary tasks of scripting
languages and traditional shells. In fact, Perl (the language) started as a simple (but
useful) tool designed for text processing. It has grown well beyond those humble
roots, but its popularity provides strong evidence of the need it fills.

In text-based shells, this strong focus continues. When most of your interaction with
the system happens by manipulating the text-based output of programs, powerful
text processing utilities become crucial. These text parsing tools such as awk, sed, and
grep form the keystones of text-based systems management.

In PowerShell’s object-based environment, this traditional tool chain plays a less crit-
ical role. You can accomplish most of the tasks that previously required these tools
much more effectively through other PowerShell commands. However, being an
object-oriented shell does not mean that PowerShell drops all support for text pro-
cessing. Dealing with strings and unstructured text continues to play an important
part in a system administrator’s life. Since PowerShell lets you to manage the major-
ity of your system in its full fidelity (using cmdlets and objects,) the text processing
tools can once again focus primarily on actual text processing tasks.

5.1 Create a String

Problem
You want to create a variable that holds text.

Solution
Use PowerShell string variables to give you a way to store and work with text.

96 | Chapter 5: Strings and Unstructured Text

To define a string that supports variable expansion and escape characters in its defi-
nition, surround it with double quotes:

$myString = "Hello World"

To define a literal string (that does not support variable expansion or escape charac-
ters), surround it with single quotes:

$myString = 'Hello World'

Discussion
String literals come in two varieties: literal (nonexpanding) and expanding strings. To
create a literal string, place single quotes ($myString = 'Hello World') around the
text. To create an expanding string, place double quotes ($myString = "Hello
World") around the text.

In a literal string, all the text between the single quotes becomes part of your string.
In an expanding string, PowerShell expands variable names (such as $myString) and
escape sequences (such as `n) with their values (such as the content of $myString and
the newline character, respectively).

For a detailed explanation of the escape sequences and replacement rules inside Pow-
erShell strings, see “Strings” in Appendix A.

One exception to the “all text in a literal string is literal” rule comes from the quote
characters themselves. In either type of string, PowerShell lets you to place two of
that string’s quote characters together to add the quote character itself:

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

This helps prevent escaping atrocities that would arise when you try to include a sin-
gle quote in a single-quoted string. For example:

$myString = 'This string includes ' + "'" + 'single quotes' + "'"

This example shows how easy PowerShell makes it to create new
strings by adding other strings together. This is an attractive way to
build a formatted report in a script but should be used with caution.
Due to the way that the .NET Framework (and therefore PowerShell)
manages strings, adding information to the end of a large string this
way causes noticeable performance problems. If you intend to create
large reports, see Recipe 5.13, “Generate Large Reports and Text
Streams.”

See Also
• Recipe 5.13, “Generate Large Reports and Text Streams”

• “Strings” in Appendix A

5.2 Create a Multiline or Formatted String | 97

5.2 Create a Multiline or Formatted String

Problem
You want to create a variable that holds text with newlines or other explicit formatting.

Solution
Use a PowerShell here string to store and work with text that includes newlines and
other formatting information.

$myString = @"
This is the first line
of a very long string. A "here string"
lets you to create blocks of text
that span several lines.
"@

Discussion
PowerShell begins a here string when it sees the characters @" followed by a newline.
It ends the string when it sees the characters "@ on their own line. These seemingly
odd restrictions allow you to create strings that include quote characters, new-
lines, and other symbols that you commonly use when you create large blocks of
preformatted text.

These restrictions, while useful, can sometimes cause problems when
you copy and paste PowerShell examples from the Internet. Web
pages often add spaces at the end of lines, which can interfere with the
strict requirements of the beginning of a here string. If PowerShell
produces an error when your script defines a here string, check that
the here string does not include an errant space after its first quote
character.

Like string literals, here strings may be literal (and use single quotes) or expanding
(and use double quotes).

In addition to their usefulness in preformatted text variables, here strings also pro-
vide a useful way to temporarily disable lines in your script. Since PowerShell does
not provide a first-class multiline comment, you can use a here string as you would
use a multiline comment in other scripting or programming languages. Example 5-1
demonstrates this technique.

Example 5-1. Using here strings for multiline comments

This is a regular comment
$null = @"
function MyTest
{

98 | Chapter 5: Strings and Unstructured Text

Using $null for the variable name tells PowerShell to not retain the information for
your later use.

5.3 Place Special Characters in a String

Problem
You want to place special characters (such as tab and newline) in a string variable.

Solution
In an expanding string, use PowerShell’s escape sequences to include special charac-
ters such as tab and newline.

PS >$myString = "Report for Today`n----------------"
PS >$myString
Report for Today

Discussion
As discussed in Recipe 5.1, “Create a String,” PowerShell strings come in two variet-
ies: literal (or nonexpanding) and expanding strings. A literal string uses single quotes
around its text, while an expanding string uses double quotes around its text.

In a literal string, all the text between the single quotes becomes part of your string.
In an expanding string, PowerShell expands variable names (such as $ENV:
SystemRoot) and escape sequences (such as `n) with their values (such as the
SystemRoot environment variable and the newline character).

Unlike many languages that use a backslash character (\) for escape
sequences, PowerShell uses a back-tick (`) character. This stems from
its focus on system administration, where backslashes are ubiquitous
in path names.

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” in Appendix A.

 "This should not be considered a function"
}

$myVariable = 10;
"@

This is regular script again

Example 5-1. Using here strings for multiline comments (continued)

5.4 Insert Dynamic Information in a String | 99

See Also
• Recipe 5.1, “Create a String”

• “Strings” in Appendix A

5.4 Insert Dynamic Information in a String

Problem
You want to place dynamic information (such as the value of another variable) in a
string.

Solution
In an expanding string, include the name of a variable in the string to insert the value
of that variable.

PS >$header = "Report for Today"
PS >$myString = "$header`n----------------"
PS >$myString
Report for Today

To include information more complex than just the value of a variable, enclose it in a
subexpression:

PS >$header = "Report for Today"
PS >$myString = "$header`n$('-' * $header.Length)"
PS >$myString
Report for Today

Discussion
Variable substitution in an expanding string is a simple enough concept, but subex-
pressions deserve a little clarification.

A subexpression is the dollar sign character, followed by a PowerShell command (or
set of commands) contained in parentheses:

$(subexpression)

When PowerShell sees a subexpression in an expanding string, it evaluates the sub-
expression and places the result in the expanding string. In the solution, the expres-
sion '-' * $header.Length tells PowerShell to make a line of dashes $header.Length
long.

Another way to place dynamic information inside a string is to use PowerShell’s
string formatting operator, which is based on the rules of the .NET string formatting:

PS >$header = "Report for Today"
PS >$myString = "{0}`n{1}" -f $header,('-' * $header.Length)

100 | Chapter 5: Strings and Unstructured Text

PS >$myString
Report for Today

For an explanation of PowerShell’s formatting operator, see Recipe 5.6, “Place For-
matted Information in a String.” For more information about PowerShell’s escape
characters, type Get-Help About_Escape_Character or type Get-Help About_Special_
Character.

See Also
• Recipe 5.6, “Place Formatted Information in a String”

5.5 Prevent a String from Including Dynamic
Information

Problem
You want to prevent PowerShell from interpreting special characters or variable
names inside a string.

Solution
Use a nonexpanding string to have PowerShell interpret your string exactly as
entered. A nonexpanding uses the single quote character around its text.

PS >$myString = 'Useful PowerShell characters include: $, `, " and { }'
PS >$myString
Useful PowerShell characters include: $, `, " and { }

If you want to include newline characters as well, use a nonexpanding here string, as
in Example 5-2.

Example 5-2. A nonexpanding here string that includes newline characters

PS >$myString = @'
>> Tip of the Day
>> --------------
>> Useful PowerShell characters include: $, `, ', " and { }
>> '@
>>
PS >$myString
Tip of the Day

Useful PowerShell characters include: $, `, ', " and { }

5.6 Place Formatted Information in a String | 101

Discussion
In a literal string, all the text between the single quotes becomes part of your string.
This is in contrast to an expanding string, where PowerShell expands variable names
(such as $myString) and escape sequences (such as `n) with their values (such as the
content of $myString and the newline character).

Nonexpanding strings are a useful way to manage files and folders that
contain special characters that might otherwise be interpreted as
escape sequences. For more information about managing files with
special characters in their name, see Recipe 17.6, “Manage Files That
Include Special Characters.”

As discussed in Recipe 5.1, “Create a String,” one exception to the “all text in a lit-
eral string is literal” rule comes from the quote characters themselves. In either type
of string, PowerShell let you place two of that string’s quote characters together to
include the quote character itself:

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

See Also
• Recipe 5.1, “Create a String”

• Recipe 17.6, “Manage Files That Include Special Characters”

5.6 Place Formatted Information in a String

Problem
You want to place formatted information (such as right-aligned text or numbers
rounded to a specific number of decimal places) in a string.

Solution
Use PowerShell’s formatting operator to place formatted information inside a string.

PS >$formatString = "{0,8:D4} {1:C}`n"
PS >$report = "Quantity Price`n"
PS >$report += "---------------`n"
PS >$report += $formatString -f 50,2.5677
PS >$report += $formatString -f 3,9
PS >$report
Quantity Price

 0050 $2.57
 0003 $9.00

102 | Chapter 5: Strings and Unstructured Text

Discussion
PowerShell’s string formatting operator (-f) uses the same string formatting rules as
the String.Format() method in the .NET Framework. It takes a format string on its
left side, and the items you want to format on its right side.

In the solution, you format two numbers: a quantity and a price. The first number
({0}) represents the quantity and is right-aligned in a box of 8 characters (,8). It is
formatted as a decimal number with 4 digits (:D4). The second number ({1}) repre-
sents the price, which you format as currency (:C).

For a detailed explanation of PowerShell’s formatting operator, see “Simple Opera-
tors” in Appendix A, PowerShell Language and Environment. For a detailed list of
the formatting rules, see Appendix H, .NET String Formatting.

Although primarily used to control the layout of information, the string-formatting
operator is also a readable replacement for what is normally accomplished with
string concatenation:

PS >$number1 = 10
PS >$number2 = 32
PS >"$number2 divided by $number1 is " + $number2 / $number1
32 divided by 10 is 3.2

The string formatting operator makes this much easier to read:

PS >"{0} divided by {1} is {2}" -f $number2, $number1, ($number2 / $number1)
32 divided by 10 is 3.2

In addition to the string formatting operator, PowerShell provides three formatting
commands (Format-Table, Format-Wide, and Format-List) that lets you to easily gen-
erate formatted reports. For detailed information about those cmdlets, see “Format-
ting Output” in Appendix A.

See Also
• “Formatting Output” in Appendix A

• “Simple Operators” in Appendix A

• Appendix H, .NET String Formatting

5.7 Search a String for Text or a Pattern

Problem
You want to determine if a string contains another string, or want to find the posi-
tion of a string within another string.

5.7 Search a String for Text or a Pattern | 103

Solution
PowerShell provides several options to help you search a string for text.

Use the –like operator to determine whether a string matches a given DOS-like
wildcard:

PS >"Hello World" –like "*llo W*"
True

Use the –match operator to determine whether a string matches a given regular
expression:

PS >"Hello World" –match '.*l[l-z]o W.*$'
True

Use the Contains() method to determine whether a string contains a specific string:

PS >"Hello World".Contains("World")
True

Use the IndexOf() method to determine the location of one string within another:

PS >"Hello World".IndexOf("World")
6

Discussion
Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The Contains() and IndexOf() methods are two
examples of the many features that the String class supports. To learn what other
functionality the String class supports, see Recipe 3.9, “Learn About Types and
Objects.”

Although they use similar characters, simple wildcards and regular expressions serve
significantly different purposes. Wildcards are much more simple than regular
expressions, and because of that, more constrained. While you can summarize the
rules for wildcards in just four bullet points, entire books have been written to help
teach and illuminate the use of regular expressions.

A common use of regular expressions is to search for a string that
spans multiple lines. By default, regular expressions do not search
across lines, but you can use the singleline (?s) option to instruct them
to do so:

PS >"Hello `n World" -match "Hello.*World"

False

PS >"Hello `n World" -match "(?s)Hello.*World"

True

Wildcards lend themselves to simple matches, while regular expressions lend them-
selves to more complex matches.

104 | Chapter 5: Strings and Unstructured Text

For a detailed description of the –like operator, see “Comparison Operators” in
Appendix A. For a detailed description of the –match operator, see “Simple Opera-
tors” in Appendix A, PowerShell Language and Environment. For a detailed list of the
regular expression rules and syntax, see Appendix B, Regular Expression Reference.

One difficulty sometimes arises when you try to store the result of a PowerShell com-
mand in a string, as shown in Example 5-3.

The –match operator searches a string for the pattern you specify but seems to fail in
this case. This is because all PowerShell commands generate objects. If you don’t
store that output in another variable or pass it to another command, PowerShell con-
verts to a text representation before it displays it to you. In Example 5-3,
$helpContent is a fully featured object, not just its string representation:

PS >$helpContent.Name
Get-ChildItem

To work with the text-based representation of a PowerShell command, you can
explicitly send it through the Out-String cmdlet. The Out-String cmdlet converts its
input into the text-based form you are used to seeing on the screen:

PS >$helpContent = Get-Help Get-ChildItem | Out-String
PS >$helpContent -match "location"
True

See Also
• Recipe 3.9, “Learn About Types and Objects”

• “Comparison Operators” in Appendix A

• “Simple Operators” in Appendix A

• Appendix B, Regular Expression Reference

Example 5-3. Attempting to store output of a PowerShell command in a string

PS >Get-Help Get-ChildItem

NAME
 Get-ChildItem

SYNOPSIS
 Gets the items and child items in one or more specified locations.

(...)

PS >$helpContent = Get-Help Get-ChildItem
PS >$helpContent -match "location"
False

5.8 Replace Text in a String | 105

5.8 Replace Text in a String

Problem
You want to replace a portion of a string with another string.

Solution
PowerShell provides several options to help you replace text in a string with other
text.

Use the Replace() method on the string itself to perform simple replacements:

PS >"Hello World".Replace("World", "PowerShell")
Hello PowerShell

Use PowerShell’s regular expression –replace operator to perform more advanced
regular expression replacements:

PS >"Hello World" -replace '(.*) (.*)','$2 $1'
World Hello

Discussion
The Replace() method and the –replace operator both provide useful ways to replace
text in a string. The Replace() method is the quickest but also the most constrained.
It replaces every occurrence of the exact string you specify with the exact replace-
ment string that you provide. The –replace operator provides much more flexibil-
ity, since its arguments are regular expressions that can match and replace complex
patterns.

The regular expressions that you use with the –replace operator often
contain characters that PowerShell normally interprets as variable
names or escape characters. To prevent PowerShell from interpreting
these characters, use a nonexpanding string (single quotes) as shown
by the solution.

For more information about the –replace operator, see “Simple Operators” in
Appendix A and Appendix H, .NET String Formatting.

See Also
• “Simple Operators” in Appendix A

• Appendix H, .NET String Formatting

106 | Chapter 5: Strings and Unstructured Text

5.9 Convert a String to Upper/Lowercase

Problem
You want to convert a string to uppercase or lowercase.

Solution
Use the ToUpper() and ToLower() methods of the string to convert it to uppercase and
lowercase, respectively.

To convert a string to uppercase, use the ToUpper() method:

PS >"Hello World".ToUpper()
HELLO WORLD

To convert a string to lowercase, use the ToLower() method:

PS >"Hello World".ToLower()
hello world

Discussion
Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The ToUpper() and ToLower() methods are two examples
of the many features that the String class supports. To learn what other functionality
the String class supports, see Recipe 3.9, “Learn About Types and Objects.”

Neither PowerShell nor the methods of the .NET String class directly
support capitalizing only the first letter of a word. If you want to capi-
talize only the first character of a word or sentence, try the following
commands:

PS >$text = "hello"

PS >$newText = $text.Substring(0,1).ToUpper() +

>> $text.Substring(1)

>> $newText

>>

Hello

One thing to keep in mind as you convert a string to uppercase or lowercase is your
motivation for doing it. One of the most common reasons is for comparing strings,
as shown in Example 5-4.

Example 5-4. Using the ToUpper() method to normalize strings

$text comes from the user, and contains the value "quit"
if($text.ToUpper() -eq "QUIT") { ... }

5.10 Trim a String | 107

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways
when your script runs in different cultures. Many cultures follow different capitaliza-
tion and comparison rules than you may be used to. For example, the Turkish lan-
guage includes two types of the letter “I”: one with a dot, and one without. The
uppercase version of the lowercase letter “i” corresponds to the version of the capital
I with a dot, not the capital I used in QUIT. Those capitalization rules cause the string
comparison code in Example 5-4 to fail in the Turkish culture.

To compare some input against a hard-coded string in a case-insensitive manner, the
better solution is to use PowerShell’s –eq operator without changing any of the cas-
ing yourself. The –eq operator is case-insensitive and culture-neutral by default:

PS >$text1 = "Hello"
PS >$text2 = "HELLO"
PS >$text1 –eq $text2
True

For more information about writing culture-aware scripts, see Recipe 12.6, “Write
Culture-Aware Scripts.”

See Also
• Recipe 3.9, “Learn About Types and Objects”

• Recipe 12.6, “Write Culture-Aware Scripts”

5.10 Trim a String

Problem
You want to remove leading or trailing spaces from a string or user input.

Solution
Use the Trim() method of the string to remove all leading and trailing whitespace
characters from that string.

PS >$text = " `t Test String`t `t"
PS >"|" + $text.Trim() + "|"
|Test String|

Discussion
The Trim() method cleans all whitespace from the beginning and end of a string. If
you want just one or the other, you can also call the TrimStart() or TrimEnd()
method to remove whitespace from the beginning or the end of the string, respec-
tively. If you want to remove specific characters from the beginning or end of a
string, the Trim(), TrimStart(), and TrimEnd() methods provide options to support
that. To trim a list of specific characters from the end of a string, provide that list to
the method, as shown in Example 5-5.

108 | Chapter 5: Strings and Unstructured Text

At first blush, the following command that attempts to trim the text
"World" from the end of a string appears to work incorrectly:

PS >"Hello World".TrimEnd(" World")

He

This happens because the TrimEnd() method takes a list of characters
to remove from the end of a string. PowerShell automatically converts
a string to a list of characters if required, so this command is in fact the
same as the command in Example 5-5.

If you want to replace text anywhere in a string (and not just from the beginning or
end), see Recipe 5.8, “Replace Text in a String.”

See Also
• Recipe 5.8, “Replace Text in a String”

5.11 Format a Date for Output

Problem
You want to control the way that PowerShell displays or formats a date.

Solution
To control the format of a date, use one of the following options:

• The Get-Date cmdlet’s –Format parameter:
PS >Get-Date -Date "05/09/1998 1:23 PM" -Format "dd-MM-yyyy @ hh:mm:ss"
09-05-1998 @ 01:23:00

• PowerShell’s string formatting (-f) operator:
PS >$date = [DateTime] "05/09/1998 1:23 PM"
PS >"{0:dd-MM-yyyy @ hh:mm:ss}" -f $date
09-05-1998 @ 01:23:00

• The object’s ToString() method:
PS >$date = [DateTime] "05/09/1998 1:23 PM"
PS >$date.ToString("dd-MM-yyyy @ hh:mm:ss")
09-05-1998 @ 01:23:00

• The Get-Date cmdlet’s –UFormat parameter, which supports Unix date format
strings:

PS >Get-Date -Date "05/09/1998 1:23 PM" -UFormat "%d-%m-%Y @ %I:%M:%S"
09-05-1998 @ 01:23:00

Example 5-5. Trimming a list of characters from the end of a string

PS >"Hello World".TrimEnd('d','l','r','o','W',' ')
He

5.11 Format a Date for Output | 109

Discussion
Except for the –Uformat parameter of the Get-Date cmdlet, all date formatting in
PowerShell uses the standard .NET DateTime format strings. These format strings
let you display dates in one of many standard formats (such as your system’s short or
long date patterns), or in a completely custom manner. For more information on
how to specify standard .NET DateTime format strings, see Appendix I, .NET
DateTime Formatting.

If you are already used to the Unix-style date formatting strings (or are converting an
existing script that uses a complex one), the –Uformat parameter of the Get-Date
cmdlet may be helpful. It accepts the format strings accepted by the Unix date com-
mand, but does not provide any functionality that standard .NET date formatting
strings cannot.

When working with the string version of dates and times, be aware that they are the
most common source of internationalization issues—problems that arise from run-
ning a script on a machine with a different culture than the one it was written on. In
North America “05/09/1998” means “May 9, 1998.” In many other cultures, though,
it means “September 5, 1998.” Whenever possible use and compare DateTime objects
(rather than strings) to other DateTime objects, as that avoids these cultural differ-
ences. Example 5-6 demonstrates this approach.

PowerShell always assumes the North American date format when it
interprets a DateTime constant such as [DateTime] "05/09/1998". This
is for the same reason that all languages interpret numeric constants
(such as 12.34) in the North American format. If it did otherwise,
nearly every script that dealt with dates and times would fail on inter-
national systems.

For more information about the Get-Date cmdlet, type Get-Help Get-Date.

See Also
• Appendix I, .NET DateTime Formatting

Example 5-6. Comparing DateTime objects with the -gt operator

PS >$dueDate = [DateTime] "01/01/2006"
PS >if([DateTime]::Now -gt $dueDate)
>> {
>> "Account is now due"
>> }
>>
Account is now due

110 | Chapter 5: Strings and Unstructured Text

5.12 Program: Convert Text Streams to Objects
One of the strongest features of PowerShell is its object-based pipeline. You don’t
waste your energy creating, destroying, and recreating the object representation of
your data. In other shells, you lose the full-fidelity representation of data when the
pipeline converts it to pure text. You can regain some of it through excessive text
parsing, but not all of it.

However, you still often have to interact with low-fidelity input that originates from
outside PowerShell. Text-based data files and legacy programs are two examples.

PowerShell offers great support for two of the three text-parsing staples:

Sed
Replaces text. For that functionality, PowerShell offers the -replace operator.

Grep
Searches text. For that functionality, PowerShell offers the Select-String cmdlet,
among others.

The third traditional text-parsing tool, Awk, lets you to chop a line of text into more
intuitive groupings. PowerShell offers the Split() method on strings, but that lacks
some of the power you usually need to break a string into groups.

The Convert-TextObject script presented in Example 5-7 lets you convert text
streams into a set of objects that represent those text elements according to the rules
you specify. From there, you can use all of PowerShell’s object-based tools, which
gives you even more power than you would get with the text-based equivalents.

Example 5-7. Convert-TextObject.ps1

##
##
Convert-TextObject.ps1 -- Convert a simple string into a custom PowerShell
object.
##
Parameters:
##
[string] Delimiter
If specified, gives the .NET Regular Expression with which to
split the string. The script generates properties for the
resulting object out of the elements resulting from this split.
If not specified, defaults to splitting on the maximum amount
of whitespace: "\s+", as long as ParseExpression is not
specified either.
##
[string] ParseExpression
If specified, gives the .NET Regular Expression with which to
parse the string. The script generates properties for the
resulting object out of the groups captured by this regular
expression.
##

5.12 Program: Convert Text Streams to Objects | 111

** NOTE ** Delimiter and ParseExpression are mutually exclusive.
##
[string[]] PropertyName
If specified, the script will pair the names from this object
definition with the elements from the parsed string. If not
specified (or the generated object contains more properties
than you specify,) the script uses property names in the
pattern of Property1,Property2,...,PropertyN
##
[type[]] PropertyType
If specified, the script will pair the types from this list with
the properties from the parsed string. If not specified (or the
generated object contains more properties than you specify,) the
script sets the properties to be of type [string]
##
##
Example usage:
"Hello World" | Convert-TextObject
Generates an Object with "Property1=Hello" and "Property2=World"
##
"Hello World" | Convert-TextObject -Delimiter "ll"
Generates an Object with "Property1=He" and "Property2=o World"
##
"Hello World" | Convert-TextObject -ParseExpression "He(ll.*o)r(ld)"
Generates an Object with "Property1=llo Wo" and "Property2=ld"
##
"Hello World" | Convert-TextObject -PropertyName FirstWord,SecondWord
Generates an Object with "FirstWord=Hello" and "SecondWord=World
##
"123 456" | Convert-TextObject -PropertyType $([string],[int])
Generates an Object with "Property1=123" and "Property2=456"
The second property is an integer, as opposed to a string
##
##
param(
 [string] $delimiter,
 [string] $parseExpression,
 [string[]] $propertyName,
 [type[]] $propertyType
)

function Main(
 $inputObjects, $parseExpression, $propertyType,
 $propertyName, $delimiter)
{
 $delimiterSpecified = [bool] $delimiter
 $parseExpressionSpecified = [bool] $parseExpression

 ## If they've specified both ParseExpression and Delimiter, show usage
 if($delimiterSpecified -and $parseExpressionSpecified)

Example 5-7. Convert-TextObject.ps1 (continued)

112 | Chapter 5: Strings and Unstructured Text

 {
 Usage
 return
 }

 ## If they enter no parameters, assume a default delimiter of whitespace
 if(-not $($delimiterSpecified -or $parseExpressionSpecified))
 {
 $delimiter = "\s+"
 $delimiterSpecified = $true
 }

 ## Cycle through the $inputObjects, and parse it into objects
 foreach($inputObject in $inputObjects)
 {
 if(-not $inputObject) { $inputObject = "" }
 foreach($inputLine in $inputObject.ToString())
 {
 ParseTextObject $inputLine $delimiter $parseExpression `
 $propertyType $propertyName
 }
 }
}

function Usage
{
 "Usage: "
 " Convert-TextObject"
 " Convert-TextObject -ParseExpression parseExpression " +
 "[-PropertyName propertyName] [-PropertyType propertyType]"
 " Convert-TextObject -Delimiter delimiter " +
 "[-PropertyName propertyName] [-PropertyType propertyType]"
 return
}

Function definition -- ParseTextObject.
Perform the heavy-lifting -- parse a string into its components.
for each component, add it as a note to the Object that we return
function ParseTextObject
{
 param(
 $textInput, $delimiter, $parseExpression,
 $propertyTypes, $propertyNames)

 $parseExpressionSpecified = -not $delimiter

 $returnObject = New-Object PSObject

 $matches = $null
 $matchCount = 0
 if($parseExpressionSpecified)
 {

Example 5-7. Convert-TextObject.ps1 (continued)

5.12 Program: Convert Text Streams to Objects | 113

 ## Populates the matches variable by default
 [void] ($textInput -match $parseExpression)
 $matchCount = $matches.Count
 }
 else
 {
 $matches = [Regex]::Split($textInput, $delimiter)
 $matchCount = $matches.Length
 }

 $counter = 0
 if($parseExpressionSpecified) { $counter++ }
 for(; $counter -lt $matchCount; $counter++)
 {
 $propertyName = "None"
 $propertyType = [string]

 ## Parse by Expression
 if($parseExpressionSpecified)
 {
 $propertyName = "Property$counter"

 ## Get the property name
 if($counter -le $propertyNames.Length)
 {
 if($propertyName[$counter - 1])
 {
 $propertyName = $propertyNames[$counter - 1]
 }
 }

 ## Get the property value
 if($counter -le $propertyTypes.Length)
 {
 if($types[$counter - 1])
 {
 $propertyType = $propertyTypes[$counter - 1]
 }
 }
 }
 ## Parse by delimiter
 else
 {
 $propertyName = "Property$($counter + 1)"

 ## Get the property name
 if($counter -lt $propertyNames.Length)
 {
 if($propertyNames[$counter])
 {
 $propertyName = $propertyNames[$counter]
 }
 }

Example 5-7. Convert-TextObject.ps1 (continued)

114 | Chapter 5: Strings and Unstructured Text

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

5.13 Generate Large Reports and Text Streams

Problem
You want to write a script that generates a large report or large amount of data

Solution
The best approach to generating a large amount of data is to take advantage of Pow-
erShell’s streaming behavior whenever possible. Opt for solutions that pipeline data
between commands:

Get-ChildItem C:\ *.txt -Recurse | Out-File c:\temp\AllTextFiles.txt

rather than collect the output at each stage:

 ## Get the property value
 if($counter -lt $propertyTypes.Length)
 {
 if($propertyTypes[$counter])
 {
 $propertyType = $propertyTypes[$counter]
 }
 }
 }

 Add-Note $returnObject $propertyName `
 ($matches[$counter] -as $propertyType)
 }

 $returnObject
}

Add a note to an object
function Add-Note ($object, $name, $value)
{
 $object | Add-Member NoteProperty $name $value
}

Main $input $parseExpression $propertyType $propertyName $delimiter

Example 5-7. Convert-TextObject.ps1 (continued)

5.13 Generate Large Reports and Text Streams | 115

$files = Get-ChildItem C:\ *.txt –Recurse
$files | Out-File c:\temp\AllTextFiles.txt

If your script generates a large text report (and streaming is not an option), use the
StringBuilder class:

$output = New-Object System.Text.StringBuilder
Get-ChildItem C:\ *.txt -Recurse |
 Foreach-Object { [void] $output.Append($_.FullName + "`n") }
$output.ToString()

rather than simple text concatenation:

$output = ""
Get-ChildItem C:\ *.txt -Recurse | Foreach-Object { $output += $_.FullName }
$output

Discussion
In PowerShell, combining commands in a pipeline is a fundamental concept. As
scripts and cmdlets generate output, PowerShell passes that output to the next com-
mand in the pipeline as soon as it can. In the solution, the Get-ChildItem com-
mands that retrieve all text files on the C: drive take a very long time to complete.
However, since they begin to generate data almost immediately, PowerShell can pass
that data onto the next command as soon as the Get-ChildItem cmdlet produces it.
This is true of any commands that generate or consume data and is called streaming.
The pipeline completes almost as soon as the Get-ChildItem cmdlet finishes produc-
ing its data and uses memory very efficiently as it does so.

The second Get-ChildItem example (that collects its data) prevents PowerShell from
taking advantage of this streaming opportunity. It first stores all the files in an array,
which, because of the amount of data, takes a long time and enormous amount of
memory. Then, it sends all those objects into the output file, which takes a long time
as well.

However, most commands can consume data produced by the pipeline directly, as
illustrated by the Out-File cmdlet. For those commands, PowerShell provides
streaming behavior as long as you combine the commands into a pipeline. For com-
mands that do not support data coming from the pipeline directly, the Foreach-
Object cmdlet (with the aliases of foreach and %) lets you to still work with each
piece of data as the previous command produces it, as shown in the StringBuilder
example.

Creating large text reports

When you generate large reports, it is common to store the entire report into a string,
and then write that string out to a file once the script completes. You can usually
accomplish this most effectively by streaming the text directly to its destination (a file
or the screen), but sometimes this is not possible.

116 | Chapter 5: Strings and Unstructured Text

Since PowerShell makes it so easy to add more text to the end of a string (as in
$output += $_.FullName), many initially opt for that approach. This works great for
small-to-medium strings, but causes significant performance problems for large
strings.

As an example of this performance difference, compare the following:

PS >Measure-Command {

>> $output = New-Object Text.StringBuilder

>> 1..10000 |

>> Foreach-Object { $output.Append("Hello World") }

>> }

>>

(...)

TotalSeconds : 2.3471592

PS >Measure-Command {

>> $output = ""

>> 1..10000 | Foreach-Object { $output += "Hello World" }

>> }

>>

(...)

TotalSeconds : 4.9884882

In the .NET Framework (and therefore PowerShell), strings never change after you
create them. When you add more text to the end of a string, PowerShell has to build
a new string by combining the two smaller strings. This operation takes a long time
for large strings, which is why the .NET Framework includes the System.Text.
StringBuilder class. Unlike normal strings, the StringBuilder class assumes that you
will modify its data—an assumption that allows it to adapt to change much more
efficiently.

117

Chapter 6 CHAPTER 6

Calculations and Math7

6.0 Introduction
Math is an important feature in any scripting language. Math support in a language
includes addition, subtraction, multiplication, and division of course, but extends fur-
ther into more advanced mathematical operations. So, it should not surprise you that
PowerShell provides a strong suite of mathematical and calculation-oriented features.

Since PowerShell provides full access to its scripting language from the command
line, though, this keeps a powerful and useful command-line calculator always at
your fingertips!

In addition to its support for traditional mathematical operations, PowerShell also
caters to system administrators by working natively with concepts such as mega-
bytes and gigabytes, simple statistics (such as sum and average), and conversions
between bases.

6.1 Perform Simple Arithmetic

Problem
You want to use PowerShell to calculate simple mathematical results.

Solution
Use PowerShell’s arithmetic operators:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

118 | Chapter 6: Calculations and Math

For a detailed description of these mathematical operators, see “Simple Operators”
in Appendix A.

Discussion
One difficulty in many programming languages comes from the way that they han-
dle data in variables. For example, this C# snippet stores the value of “1” in the
result variable, when the user probably wanted the result to hold the floating point
value of 1.5:

double result = 0;
result = 3/2;

This is because C# (along with many other languages) determines the result of the
division from the type of data being used in the division. In the example above, it
decides that you want the answer to be an integer since you used two integers in the
division.

PowerShell, on the other hand, avoids this problem. Even if you use two integers in a
division, PowerShell returns the result as a floating point number if required. This is
called widening.

PS >$result = 0
PS >$result = 3/2
PS >$result
1.5

One exception to this automatic widening is when you explicitly tell PowerShell the
type of result you want. For example, you might use an integer cast ([int]) to say
that you want the result to be an integer after all:

PS >$result = [int] (3/2)
PS >$result
2

Many programming languages drop the portion after the decimal point when they
convert them from floating point numbers to integers. This is called truncation.
PowerShell, on the other hand, uses banker’s rounding for this conversion. It con-
verts floating point numbers to their nearest integer, rounding to the nearest even
number in case of a tie.

Several programming techniques use truncation, though, so it is still important that a
scripting language somehow support it. PowerShell does not have a built-in operator
that performs a truncation-style division, but it does support it through the [Math]::
Truncate() method in the .NET Framework:

PS >$result = 3/2
PS >[Math]::Truncate($result)
1

+=, -=, *=, /=, and %= Assignment variations of the above

() Precedence/Order of operations

6.2 Perform Complex Arithmetic | 119

If that syntax seems burdensome, the following example defines a trunc function
that truncates its input:

PS >function trunc($number) { [Math]::Truncate($number) }
PS >$result = 3/2
PS >trunc $result
1

See Also
• “Simple Operators” in Appendix A

6.2 Perform Complex Arithmetic

Problem
You want to use PowerShell to calculate more complex or advanced mathematical
results.

Solution
PowerShell supports more advanced mathematical tasks primarily through its sup-
port for the System.Math class in the .NET Framework.

To find the absolute value of a number, use the [Math]::Abs() method:

PS >[Math]::Abs(-10.6)

10.6

To find the power (such as the square or the cube) of a number, use the [Math]::
Pow() method. In this case, finding 123 squared:

PS >[Math]::Pow(123, 2)
15129

To find the square root of a number, use the [Math]::Sqrt() method:

PS >[Math]::Sqrt(100)
10

To find the sine, cosine, or tangent of an angle (given in radians), use the [Math]::
Sin(), [Math]::Cos(), or [Math]::Tan() method:

PS >[Math]::Sin([Math]::PI / 2)
1

To find the angle (given in radians) of a sine, cosine, or tangent value, use the
[Math]::ASin(), [Math]::ACos(), or [Math]::ATan() method:

PS >[Math]::ASin(1)
1.5707963267949

See Recipe 3.9, “Learn About Types and Objects.” to learn how to find out what
other features the System.Math class provides.

120 | Chapter 6: Calculations and Math

Discussion
Once you start working with the System.Math class, it may seem as though its design-
ers left out significant pieces of functionality. The class supports the square root of a
number, but doesn’t support other roots (such as the cube root). It supports sine,
cosine, and tangent (and their inverses) in radians, but not in the more commonly
used measure of degrees.

Working with any root

To determine any root (such as the cube root) of a number, you can use the function
given in Example 6-1.

This function applies the mathematical fact that you can express any root (such as
the cube root) of a number as a series of operations with any other well-known root.
Although you can pick 2 as a base (which generates square roots and powers of 2),
the [Math]::Exp() and [Math]::Log() methods in the System.Math class use a more
common mathematical base called e.

The [Math]::Exp() and [Math]::Log() functions use e (approximately
2.718) as a base largely because the number appears so frequently in
the type of mathematics that use these functions!

The example also illustrates a very important point about math on computers. When
you use this function (or anything else that manipulates floating point numbers),
always be aware that the results of floating point answers are only ever approxima-
tions of the actual result. If you combine multiple calculations in the same statement,
programming and scripting languages can sometimes improve the accuracy of their
answer (such as in the second [Math]::Pow() attempt), but that exception is rare.

Some mathematical systems avoid this problem by working with equations and cal-
culations as symbols (and not numbers). Like humans, these systems know that tak-
ing the square of a number that you just took the square root of gives you the
original number right back—so they don’t actually have to do either of those opera-
tions. These systems, however, are extremely specialized and usually very expensive.

Example 6-1. A root function and some example calculations

PS >function root($number, $root) { [Math]::Exp($([Math]::Log($number) / $root)) }
PS >root 64 3
4
PS >root 25 5
1.90365393871588
PS >[Math]::Pow(1.90365393871588, 5)
25.0000000000001
PS >[Math]::Pow($(root 25 5), 5)
25

6.3 Measure Statistical Properties of a List | 121

Working with degrees instead of radians

Converting radians (the way that mathematicians commonly measure angles) to
degrees (the way that most people commonly measure angles) is much more straight-
forward than the root function. A circle has 2 * Pi radians if you measure in radians,
and 360 degrees if you measure in degrees. That gives the following two functions:

PS >function Convert-RadiansToDegrees($angle) { $angle / (2 * [Math]::Pi) * 360 }
PS >function Convert-DegreesToRadians($angle) { $angle / 360 * (2 * [Math]::Pi) }

and their usage:

PS >Convert-RadiansToDegrees ([Math]::Pi)
180
PS >Convert-RadiansToDegrees ([Math]::Pi / 2)
90
PS >Convert-DegreesToRadians 360
6.28318530717959
PS >Convert-DegreesToRadians 45
0.785398163397448
PS >[Math]::Tan((Convert-DegreesToRadians 45))
1

See Also
• Recipe 3.9, “Learn About Types and Objects”

6.3 Measure Statistical Properties of a List

Problem
You want to measure the numeric (minimum, maximum, sum, average) or textual
(characters, words, lines) features of a list of objects.

Solution
Use the Measure-Object cmdlet to measure these statistical properties of a list.

To measure the numeric features of a stream of objects, pipe those objects to the
Measure-Object cmdlet:

PS >1..10 | Measure-Object –Average -Sum

Count : 10
Average : 5.5
Sum : 55
Maximum :
Minimum :
Property :

122 | Chapter 6: Calculations and Math

To measure the numeric features of a specific property in a stream of objects, supply
that property name to the –Property parameter of the Measure-Object cmdlet. For
example, in a directory with files:

PS >Get-ChildItem | Measure-Object -Property Length -Max -Min -Average -Sum

Count : 427
Average : 10617025.4918033
Sum : 4533469885
Maximum : 647129088
Minimum : 0
Property : Length

To measure the textual features of a stream of objects, use the –Character, -Word, and
–Line parameters of the Measure-Object cmdlet:

PS >Get-ChildItem > output.txt
PS >Get-Content output.txt | Measure-Object -Character -Word -Line

 Lines Words Characters Property
 ----- ----- ---------- --------
 964 6083 33484

Discussion
By default, the Measure-Object cmdlet counts only the number of objects it receives.
If you want to measure additional properties (such as the maximum, minimum, aver-
age, sum, characters, words, or lines) of those objects, then you need to specify them
as options to the cmdlet.

For the numeric properties, though, you usually don’t want to measure the objects
themselves. Instead, you probably want to measure a specific property from the
list—such as the Length property of a file. For that purpose, the Measure-Object
cmdlet supports the –Property parameter to which you provide the property you
want to measure.

Sometimes, you might want to measure a property that isn’t a simple number—such
as the LastWriteTime property of a file. Since the LastWriteTime property is a
DateTime, you can’t determine its average immediately. However, if any property
allows you to convert it to a number and back in a meaningful way (such as the Ticks
property of a DateTime), then you can still compute its statistical properties.
Example 6-2 shows how to get the average LastWriteTime from a list of files.

Example 6-2. Using the Ticks property of the DateTime class to determine the average
LastWriteTime of a list of files

PS >## Get the LastWriteTime from each file
PS >$times = dir | Foreach-Object { $_.LastWriteTime }

PS >## Measure the average Ticks property of those LastWriteTime

6.4 Work with Numbers As Binary | 123

For more information about the Measure-Object cmdlet, type Get-Help Measure-
Object.

6.4 Work with Numbers As Binary

Problem
You want to work with the individual bits of a number, or work with a number built
by combining a series of flags.

Solution
To directly enter a hexadecimal number, use the 0x prefix:

PS >$hexNumber = 0x1234
PS >$hexNumber
4660

To convert a number to its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS >[Convert]::ToString(1234, 2)
10011010010

To convert a binary number into its decimal representation, supply a base of 2 to the
[Convert]::ToInt32() method:

PS >[Convert]::ToInt32("10011010010", 2)
1234

To manage the individual bits of a number, use PowerShell’s binary operators. In this
case, the Archive flag is just one of the many possible attributes that may be true of a
given file:

PS >$archive = [System.IO.FileAttributes] "Archive"
PS >attrib +a test.txt
PS >Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name

Name

test.txt

PS >$results = $times | Measure-Object Ticks -Average

PS >## Create a new DateTime out of the average Ticks
PS >New-Object DateTime $results.Average

Sunday, June 11, 2006 6:45:01 AM

Example 6-2. Using the Ticks property of the DateTime class to determine the average
LastWriteTime of a list of files (continued)

124 | Chapter 6: Calculations and Math

PS >attrib -a test.txt
PS >Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name
PS >

Discussion
In some system administration tasks, it is common to come across numbers that
seem to mean nothing by themselves. The attributes of a file are a perfect example:

PS >(Get-Item test.txt).Encrypt()
PS >(Get-Item test.txt).IsReadOnly = $true
PS >[int] (Get-Item test.txt -force).Attributes
16417
PS >(Get-Item test.txt -force).IsReadOnly = $false
PS >(Get-Item test.txt).Decrypt()
PS >[int] (Get-Item test.txt).Attributes
32

What can the numbers 16417 and 32 possibly tell us about the file?

The answer to this comes from looking at the attributes in another light—as a set of
features that can be either True or False. Take, for example, the possible attributes
for an item in a directory shown by Example 6-3.

If a file is ReadOnly, Archive, and Encrypted, then you might consider this as a suc-
cinct description of the attributes on that file:

ReadOnly = True
Archive = True
Encrypted = True

It just so happens that computers have an extremely concise way of representing sets
of true and false values—a representation known as binary. To represent the
attributes of a directory item as binary, you simply put them in a table. We give the
item a “1” if the attribute applies to the item and a “0” otherwise (see Table 6-1).

Example 6-3. Possible attributes of a file

PS >[Enum]::GetNames([System.IO.FileAttributes])
ReadOnly
Hidden
System
Directory
Archive
Device
Normal
Temporary
SparseFile
ReparsePoint
Compressed
Offline
NotContentIndexed
Encrypted

6.4 Work with Numbers As Binary | 125

If we treat those features as the individual binary digits in a number, that gives us the
number 100000000100001. If we convert that number to its decimal form, it
becomes clear where the number 16417 came from:

PS >[Convert]::ToInt32("100000000100001", 2)
16417

This technique sits at the core of many properties that you can express as a combina-
tion of features or flags. Rather than list the features in a table, though, documenta-
tion usually describes the number that would result from that feature being the only
one active—such as FILE_ATTRIBUTE_REPARSEPOINT = 0x400. Example 6-4 shows the
various representations of these file attributes.

Table 6-1. Attributes of a directory item

Attribute True (1) or False (0)

Encrypted 1

NotContentIndexed 0

Offline 0

Compressed 0

ReparsePoint 0

SparseFile 0

Temporary 0

Normal 0

Device 0

Archive 1

Directory 0

<Unused> 0

System 0

Hidden 0

ReadOnly 1

Example 6-4. Integer, hexadecimal, and binary representations of possible file attributes

PS >$attributes = [Enum]::GetValues([System.IO.FileAttributes])
PS >$attributes | Select-Object `
>> @{"Name"="Property";
>> "Expression"= { $_ } },
>> @{"Name"="Integer";
>> "Expression"= { [int] $_ } },
>> @{"Name"="Hexadecimal";
>> "Expression"= { [Convert]::ToString([int] $_, 16) } },
>> @{"Name"="Binary";
>> "Expression"= { [Convert]::ToString([int] $_, 2) } } |
>> Format-Table -auto
>>

126 | Chapter 6: Calculations and Math

Knowing how that 16417 number was formed, you can now use the properties in
meaningful ways. For example, PowerShell’s –band operator allows you to check if a
certain bit has been set:

PS >$encrypted = 16384
PS >$attributes = (Get-Item test.txt -force).Attributes
PS >($attributes -band $encrypted) –eq $encrypted
True
PS >$compressed = 2048
PS >($attributes -band $compressed) –eq $compressed
False
PS >

Although the example above uses the numeric values explicitly, it would be more
common to enter the number by its name:

PS >$archive = [System.IO.FileAttributes] "Archive"
PS >($attributes -band $archive) –eq $archive
True

For more information about PowerShell’s binary operators, see “Simple Operators”
in Appendix A.

See Also
• “Simple Operators” in Appendix A

 Property Integer Hexadecimal Binary
 -------- ------- ----------- ------
 ReadOnly 1 1 1
 Hidden 2 2 10
 System 4 4 100
 Directory 16 10 10000
 Archive 32 20 100000
 Device 64 40 1000000
 Normal 128 80 10000000
 Temporary 256 100 100000000
 SparseFile 512 200 1000000000
 ReparsePoint 1024 400 10000000000
 Compressed 2048 800 100000000000
 Offline 4096 1000 1000000000000
NotContentIndexed 8192 2000 10000000000000
 Encrypted 16384 4000 100000000000000

Example 6-4. Integer, hexadecimal, and binary representations of possible file attributes (continued)

6.5 Simplify Math with Administrative Constants | 127

6.5 Simplify Math with Administrative Constants

Problem
You want to work with common administrative numbers (that is, kilobytes, mega-
bytes, and gigabytes) without having to remember or calculate those numbers.

Solution
Use PowerShell’s administrative constants (KB, MB, and GB) to help work with these
common numbers.

Calculate the download time (in seconds) of a 10.18 megabyte file over a connection
that gets 215 kilobytes per second:

PS >10.18mb / 215kb
48.4852093023256

Discussion
PowerShell’s administrative constants are based on powers of two, since those are
the kind most commonly used when working with computers. Each is 1,024 times
bigger than the one before it:

1kb = 1024
1mb = 1024 * 1 kb
1gb = 1024 * 1 mb

Some (such as hard drive manufacturers) prefer to call numbers based on powers of
two “kibibytes,” “mebibytes,” and “gibibytes.” They use the terms “kilobytes,”
“megabytes,” and “gigabytes” to mean numbers that are 1,000 times bigger than the
one before it—numbers based on powers of 10.

Although not represented by administrative constants, PowerShell still makes it easy
to work with these numbers in powers of 10—for example, to figure out how big a
“300 GB” hard drive is when reported by Windows:

PS >$kilobyte = [Math]::Pow(10,3)
PS >$kilobyte
1000
PS >$megabyte = [Math]::Pow(10,6)
PS >$megabyte
1000000
PS >$gigabyte = [Math]::Pow(10,9)
PS >$gigabyte
1000000000
PS >(300 * $gigabyte) / 1GB
279.396772384644

128 | Chapter 6: Calculations and Math

6.6 Convert Numbers Between Bases

Problem
You want to convert a number to a different base.

Solution
The PowerShell scripting language allows you to enter both decimal and hexadecimal
numbers directly. It does not natively support other number bases, but its support for
interaction with the .NET Framework enables conversion both to and from binary,
octal, decimal, and hexadecimal.

To convert a hexadecimal number into its decimal representation, prefix the number
by 0x to enter the number as hexadecimal:

PS >$myErrorCode = 0xFE4A
PS >$myErrorCode
65098

To convert a binary number into its decimal representation, supply a base of 2 to the
[Convert]::ToInt32() method:

PS >[Convert]::ToInt32("10011010010", 2)
1234

To convert an octal number into its decimal representation, supply a base of 8 to the
[Convert]::ToInt32() method:

PS >[Convert]::ToInt32("1234", 8)
668

To convert a number into its hexadecimal representation, use either the [Convert]
class or PowerShell’s format operator:

PS >## Use the [Convert] class
PS >[Convert]::ToString(1234, 16)
4d2

PS >## Use the formatting operator
PS >"{0:X4}" -f 1234
04D2

To convert a number into its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS >[Convert]::ToString(1234, 2)
10011010010

To convert a number into its octal representation, supply a base of 8 to the
[Convert]::ToString() method:

PS >[Convert]::ToString(1234, 8)
2322

6.6 Convert Numbers Between Bases | 129

Discussion
It is most common to want to convert numbers between bases when you are dealing
with numbers that represent binary combinations of data, such as the attributes of a
file. For more information on how to work with binary data like this, see Recipe 7.4,
“Parse and Manage Binary Files,”

See Also
• Recipe 7.4, “Parse and Manage Binary Files”

PART III

III.Common Tasks

Chapter 7, Simple Files

Chapter 8, Structured Files

Chapter 9, Internet-Enabled Scripts

Chapter 10, Code Reuse

Chapter 11, Lists, Arrays, and Hashtables

Chapter 12, User Interaction

Chapter 13, Tracing and Error Management

Chapter 14, Environmental Awareness

Chapter 15, Extend the Reach of Windows PowerShell

Chapter 16, Security and Script Signing

133

Chapter 7 CHAPTER 7

Simple Files8

7.0 Introduction
When administering a system, you naturally spend a significant amount of time work-
ing with the files on that system. Many of the things you want to do with these files
are simple: get their content, search them for a pattern, or replace text inside them.

For even these simple operations, PowerShell’s object-oriented flavor adds several
unique and powerful twists.

7.1 Get the Content of a File

Problem
You want to get the content of a file.

Solution
Provide the filename as an argument to the Get-Content cmdlet:

PS >$content = Get-Content c:\temp\file.txt

Place the filename in a ${ } section to use the cmdlet Get-Content variable syntax:

PS >$content = ${c:\temp\file.txt}

Provide the filename as an argument to the ReadAllText() method to use the System.
IO.File class from the .NET Framework:

PS >$content = [System.IO.File]::ReadAllText("c:\temp\file.txt")

Discussion
PowerShell offers three primary ways to get the content of a file. The first is the Get-
Content cmdlet—the cmdlet designed for this purpose. In fact, the Get-Content cmdlet
works on any PowerShell drive that supports the concept of items with content. This

134 | Chapter 7: Simple Files

includes Alias:, Function:, and more. The second and third ways are the Get-
Content variable syntax, and the ReadAllText() method.

When working against files, the Get-Content cmdlet returns the content of the file
line-by-line. When it does this, PowerShell supplies additional information about
that output line. This information, which PowerShell attaches as properties to each
output line, includes the drive and path from where that line originated, among
other things.

If you want PowerShell to split the file content based on a string that
you choose (rather than the default of newlines), the Get-Content
cmdlet’s –Delimiter parameter lets you provide one.

While useful, having PowerShell attach this extra information when you are not
using it can sometimes slow down scripts that operate on large files. If you need to
process a large file more quickly, the Get-Content cmdlet’s ReadCount parameter lets
you control how many lines PowerShell reads from the file at once. With a ReadCount
of 1 (which is the default), PowerShell returns each line one-by-one. With a
ReadCount of 2, PowerShell returns two lines at a time. With a ReadCount of less than
1, PowerShell returns all lines from the file at once.

Beware of using a ReadCount of less than 1 for extremely large files.
One of the benefits of the Get-Content cmdlet is its streaming behav-
ior. No matter how large the file, you will still be able to process each
line of the file without using up all your system’s memory. Since a
ReadCount of less than 1 reads the entire file before returning any
results, large files have the potential to use up your system’s memory.
For more information about how to effectively take advantage of Pow-
erShell’s streaming capabilities, see Recipe 5.13, “Generate Large
Reports and Text Streams.”

If performance is a primary concern, the [File]::ReadAllText() method from the .NET
Framework reads a file most quickly from the disk. Unlike the Get-Content cmdlet, it
does not split the file into newlines, attach any additional information, or work against
any other PowerShell drives. Like the Get-Content cmdlet with a ReadCount of less than
1, it reads all the content from the file before it returns it to you—so be cautious when
using it on extremely large files.

For more information about the Get-Content cmdlet, type Get-Help Get-Content. For
information on how to work with more structured files (such as XML and CSV), see
Chapter 8, Structured Files. For more information on how to work with binary files,
see Recipe 7.4, “Parse and Manage Binary Files.”

7.2 Search a File for Text or a Pattern | 135

See Also
• Recipe 5.13, “Generate Large Reports and Text Streams”

• Recipe 7.4, “Parse and Manage Binary Files”

• Chapter 8, Structured Files

7.2 Search a File for Text or a Pattern

Problem
You want to find a string or regular expression in a file.

Solution
To search a file for an exact (but case insensitive) match, use the –Simple parameter
of the Select-String cmdlet:

PS >Select-String –Simple SearchText file.txt

To search a file for a regular expression, provide that pattern to the Select-String
cmdlet:

PS >Select-String "\(...\) ...-...." phone.txt

To Recursively search all *.txt files for a regular expression, pipe the results of Get-
ChildItem to the Select-String cmdlet:

PS >Get-ChildItem -Filter *.txt -Recurse | Select-String pattern

Discussion
The Select-String cmdlet is the easiest way to search files for a pattern or specific
string. In contrast to the traditional text-matching utilities (such as grep) that sup-
port the same type of functionality, the matches returned by the Select-String
cmdlet include detailed information about the match itself.

PS >$matches = Select-String "output file" transcript.txt
PS >$matches | Select LineNumber,Line

 LineNumber Line
 ---------- ----
 7 Transcript started, output file...

If you want to search multiple files of a specific extension, the Select-String cmdlet
lets you use wildcards (such as *.txt) on the filename. For more complicated lists of
files (which includes searching all files in the directory), it is usually more useful to
use the Get-ChildItem cmdlet to generate the list of files as shown previously.

By default, the Select-String cmdlet outputs the filename, line number, and match-
ing line for every match it finds. In some cases, this output may be too much detail—

136 | Chapter 7: Simple Files

such as when you are searching for which binary file contains a specific string. Binary
files rarely make sense when displayed as text, so your screen quickly fills with
apparent garbage.

The solution to this problem comes from the Select-String’s –Quiet switch. It sim-
ply returns True or False, depending on whether the file contains the string. So, to
find the DLL in the current directory that contains the text "Debug":

Get-ChildItem | Where { $_ | Select-String "Debug" -Quiet }

Two other common tools used to search files for text are the –match operator and the
switch statement with the –file option. For more information about those, see Rec-
ipe 5.7, “Search a String for Text or a Pattern” and Recipe 4.3, “Manage Large Con-
ditional Statements with Switches.” For more information about the Select-String
cmdlet, type Get-Help Select-String.

See Also
• Recipe 4.3, “Manage Large Conditional Statements with Switches”

• Recipe 5.7, “Search a String for Text or a Pattern”

7.3 Parse and Manage Text-Based Logfiles

Problem
You want to parse and analyze a text-based logfile using PowerShell’s standard
object management commands.

Solution
Use the Convert-TextObject script given in Recipe 5.12, “Program: Convert Text
Streams to Objects.” to work with text-based logfiles. With your assistance, it con-
verts steams of text into streams of objects, which you can then easily work with
using PowerShell’s standard commands.

The Convert-TextObject script primarily takes two arguments:

1. A regular expression that describes how to break the incoming text into groups

2. A list of property names that the script then assigns to those text groups

As an example, you can use patch logs from the Windows directory. These logs track
the patch installation details from updates applied to the machine (except for Win-
dows Vista). One detail included in these logfiles are the names and versions of the
files modified by that specific patch, as shown in Example 7-1.

7.3 Parse and Manage Text-Based Logfiles | 137

Like most logfiles, the format of the text is very regular but hard to manage. In this
example, you have:

A number (the number of seconds since the patch started)
The text, “: Destination:”
The file being patched
An open parenthesis
The version of the file being patched
A close parenthesis

You don’t care about any of the text, but the time, file, and file version are useful
properties to track:

$properties = "Time","File","FileVersion"

So now, you use the Convert-TextObject script to convert the text output into a
stream of objects:

PS >$logObjects = $logContent |
>> Convert-TextObject -ParseExpression $parseExpression -PropertyName $properties
>>

We can now easily query those objects using PowerShell’s built-in commands. For
example, you can find the files most commonly affected by patches and service
packs, as shown by Example 7-2.

Example 7-1. Getting a list of files modified by hotfixes

PS >cd $env:WINDIR
PS >$parseExpression = "(.*): Destination:(.*) \((.*)\)"
PS >$files = dir kb*.log -Exclude *uninst.log
PS >$logContent = $files | Get-Content | Select-String $parseExpression
PS >$logContent

(...)
0.734: Destination:C:\WINNT\system32\shell32.dll (6.0.3790.205)
0.734: Destination:C:\WINNT\system32\wininet.dll (6.0.3790.218)
0.734: Destination:C:\WINNT\system32\urlmon.dll (6.0.3790.218)
0.734: Destination:C:\WINNT\system32\shlwapi.dll (6.0.3790.212)
0.734: Destination:C:\WINNT\system32\shdocvw.dll (6.0.3790.214)
0.734: Destination:C:\WINNT\system32\digest.dll (6.0.3790.0)
0.734: Destination:C:\WINNT\system32\browseui.dll (6.0.3790.218)
(...)

Example 7-2. Finding files most commonly affected by hotfixes

PS >$logObjects | Group-Object file | Sort-Object -Descending Count |
>> Select-Object Count,Name | Format-Table -Auto
>>

Count Name
----- ----
 152 C:\WINNT\system32\shdocvw.dll
 147 C:\WINNT\system32\shlwapi.dll

138 | Chapter 7: Simple Files

Using this technique, you can work with most text-based logfiles.

Discussion
In Example 7-2, you got all the information you needed by splitting the input text
into groups of simple strings. The time offset, file, and version information served
their purposes as is. In addition to the features used by Example 7-2, however, the
Convert-TextObject script also supports a parameter that lets you control the data
types of those properties. If one of the properties should be treated as a number or a
DateTime, you may get incorrect results if you work with that property as a string. For
more information about this functionality, see the description of the –PropertyType
parameter in the Convert-TextObject script.

Although most logfiles have entries designed to fit within a single line, some span mul-
tiple lines. When a logfile contains entries that span multiple lines, it includes some
sort of special marker to separate log entries from each other. Take, for example:

PS >Get-Content AddressBook.txt
Name: Chrissy
Phone: 555-1212

Name: John
Phone: 555-1213

The key to working with this type of logfile comes from two places. The first is the
–Delimiter parameter of the Get-Content cmdlet, which makes it split the file based
on that delimiter instead of newlines. The second is to write a ParseExpression Reg-
ular Expression that ignores the newline characters that remain in each record.

PS >$records = gc AddressBook.txt -Delimiter "----"
PS >$parseExpression = "(?s)Name: (\S*).*Phone: (\S*).*"
PS >$records | Convert-TextObject -ParseExpression $parseExpression

Property1 Property2
--------- ---------
Chrissy 555-1212
John 555-1213

The parse expression in this example uses the single line option (?s) so that the (.*)
portion of the regular expression accepts newline characters as well. For more infor-
mation about these (and other) regular expression options, see Appendix B, Regular
Expression Reference.

 128 C:\WINNT\system32\wininet.dll
 116 C:\WINNT\system32\shell32.dll
 92 C:\WINNT\system32\rpcss.dll
 92 C:\WINNT\system32\olecli32.dll
 92 C:\WINNT\system32\ole32.dll
 84 C:\WINNT\system32\urlmon.dll
(...)

Example 7-2. Finding files most commonly affected by hotfixes (continued)

7.4 Parse and Manage Binary Files | 139

For extremely large logfiles, handwritten parsing tools may not meet your needs. In
those situations, specialized log management tools can prove helpful. One example is
Microsoft’s free Log Parser (http://www.logparser.com). Another common alternative
is to import the log entries to a SQL database, and then perform ad hoc queries on
database tables, instead.

See Also
• Recipe 5.12, “Program: Convert Text Streams to Objects”

• Appendix B, Regular Expression Reference

7.4 Parse and Manage Binary Files

Problem
You want to work with binary data in a file.

Solution
Two main techniques are used when working with binary data in a file. The first is to
read the file using the Byte encoding, so that PowerShell does not treat the content as
text. The second is to use the BitConverter class to translate these bytes back and
forth into numbers that you more commonly care about.

Example 7-3 displays the “characteristics” of a Windows executable. The beginning
section of any executable (a .DLL, .EXE, and several others) starts with a binary sec-
tion known as the PE (portable executable) header. Part of this header includes char-
acteristics about that file—such as whether the file is a DLL.

For more information about the PE header format, see http://www.microsoft.com/
whdc/system/platform/firmware/PECOFF.mspx.

Example 7-3. Get-Characteristics.ps1

##
##
Get-Characteristics.ps1
##
Get the file characteristics of a file in the PE Executable File Format.
##
ie:
##
PS >Get-Characteristics $env:WINDIR\notepad.exe
IMAGE_FILE_LOCAL_SYMS_STRIPPED
IMAGE_FILE_RELOCS_STRIPPED
IMAGE_FILE_EXECUTABLE_IMAGE

140 | Chapter 7: Simple Files

IMAGE_FILE_32BIT_MACHINE
IMAGE_FILE_LINE_NUMS_STRIPPED
##
##

param([string] $filename = $(throw "Please specify a filename."))

Define the characteristics used in the PE file file header.
Taken from http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
$characteristics = @{}
$characteristics["IMAGE_FILE_RELOCS_STRIPPED"] = 0x0001
$characteristics["IMAGE_FILE_EXECUTABLE_IMAGE"] = 0x0002
$characteristics["IMAGE_FILE_LINE_NUMS_STRIPPED"] = 0x0004
$characteristics["IMAGE_FILE_LOCAL_SYMS_STRIPPED"] = 0x0008
$characteristics["IMAGE_FILE_AGGRESSIVE_WS_TRIM"] = 0x0010
$characteristics["IMAGE_FILE_LARGE_ADDRESS_AWARE"] = 0x0020
$characteristics["RESERVED"] = 0x0040
$characteristics["IMAGE_FILE_BYTES_REVERSED_LO"] = 0x0080
$characteristics["IMAGE_FILE_32BIT_MACHINE"] = 0x0100
$characteristics["IMAGE_FILE_DEBUG_STRIPPED"] = 0x0200
$characteristics["IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP"] = 0x0400
$characteristics["IMAGE_FILE_NET_RUN_FROM_SWAP"] = 0x0800
$characteristics["IMAGE_FILE_SYSTEM"] = 0x1000
$characteristics["IMAGE_FILE_DLL"] = 0x2000
$characteristics["IMAGE_FILE_UP_SYSTEM_ONLY"] = 0x4000
$characteristics["IMAGE_FILE_BYTES_REVERSED_HI"] = 0x8000

Get the content of the file, as an array of bytes
$fileBytes = Get-Content $filename -ReadCount 0 -Encoding byte

The offset of the signature in the file is stored at location 0x3c.
$signatureOffset = $fileBytes[0x3c]

Ensure it is a PE file
$signature = [char[]] $fileBytes[$signatureOffset..($signatureOffset + 3)]
if([String]::Join('', $signature) -ne "PE`0`0")
{
 throw "This file does not conform to the PE specification."
}

The location of the COFF header is 4 bytes into the signature
$coffHeader = $signatureOffset + 4

The characteristics data are 18 bytes into the COFF header. The BitConverter
class manages the conversion of the 4 bytes into an integer.
$characteristicsData = [BitConverter]::ToInt32($fileBytes, $coffHeader + 18)

Go through each of the characteristics. If the data from the file has that
flag set, then output that characteristic.
foreach($key in $characteristics.Keys)

Example 7-3. Get-Characteristics.ps1 (continued)

7.5 Create a Temporary File | 141

Discussion
For most files, this technique is the easiest way to work with binary data. If you actu-
ally modify the binary data, then you will also want to use the Byte encoding when
you send it back to disk:

$fileBytes | Set-Content modified.exe -Encoding Byte

For extremely large files, though, it may be unacceptably slow to load the entire file
into memory when you work with it. If you begin to run against this limit, the solu-
tion is to use file management classes from the .NET Framework. These classes
include BinaryReader, StreamReader, and others. For more information about work-
ing with classes from the .NET Framework, see Recipe 3.4, “Work with .NET
Objects.” For more information about running scripts, see Recipe 1.1, “Run Pro-
grams, Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 3.4, “Work with .NET Objects”

7.5 Create a Temporary File

Problem
You want to create a file for temporary purposes and want to be sure that the file
does not already exist.

Solution
Use the [System.IO.Path]::GetTempFilename() method from the .NET Framework to
create a temporary file:

$filename = [System.IO.Path]::GetTempFileName()
 (... use the file ...)
Remove-Item -Force $filename

{
 $flag = $characteristics[$key]
 if(($characteristicsData -band $flag) -eq $flag)
 {
 $key
 }
}

Example 7-3. Get-Characteristics.ps1 (continued)

142 | Chapter 7: Simple Files

Discussion
It is common to want to create a file for temporary purposes. For example, you might
want to search and replace text inside a file. Doing this to a large file requires a tempo-
rary file (see Recipe 7.6, “Search and Replace Text in a File”). Another example is the
temporary file used by Recipe 2.3, “Program: Interactively Filter Lists of Objects.”

Often, people create this temporary file wherever they can think of: in C:\, the
script’s current location, or any number of other places. Although this may work on
the author’s system, it rarely works well elsewhere. For example, if the user does not
use their Administrator account for day-to-day tasks, your script will not have access
to C:\ and will fail.

Another difficulty comes from trying to create a unique name for the temporary file.
If your script just hardcodes a name (no matter how many random characters it has),
it will fail if you run two copies at the same time. You might even craft a script smart
enough to search for a filename that does not exist, create it, and then use it. Unfor-
tunately, this could still break if another copy of your script creates that file after you
see that it is missing—but before you actually create the file.

Finally, there are several security vulnerabilities that your script might introduce
should it write its temporary files to a location that other users can read or write.

Luckily, the authors of the .NET Framework provided the [System.IO.Path]::
GetTempFilename() method to resolve these problems for you. It creates a unique file-
name in a reliable location in a secure manner. The method returns a filename,
which you can then use as you want.

Remember to delete this file when your script no longer needs it; oth-
erwise, your script will waste disk space and cause needless clutter on
your users’ systems. Remember: your scripts should solve the adminis-
trator’s problems, not cause them!

By default, the GetTempFilename() method returns a file with a .tmp extension. For
most purposes, the file extension does not matter, and this works well. In the rare
instances when you need to create a file with a specific extension, the [System.IO.
Path]::ChangeExtension() method lets you change the extension of that temporary
file. The following example creates a new temporary file that uses the .cs file extension:

$filename = [System.IO.Path]::GetTempFileName()
$newname = [System.IO.Path]::ChangeExtension($filename, ".cs")
Move-Item $filename $newname
(... use the file ...)
Remove-Item $newname

7.6 Search and Replace Text in a File | 143

See Also
• Recipe 2.3, “Program: Interactively Filter Lists of Objects”

• Recipe 7.6, “Search and Replace Text in a File

7.6 Search and Replace Text in a File

Problem
You want to search for text in a file and replace that text with something new.

Solution
To search and replace text in a file, first store the content of the file in a variable, and
then store the replaced text back in that file as shown in Example 7-4.

Discussion
Using PowerShell to search and replace text in a file (or many files!) is one of the best
examples of using a tool to automate a repetitive task. What could literally take
months by hand can be shortened to a few minutes (or hours, at most).

Example 7-4. Replacing text in a file

PS >$filename = "file.txt"
PS >$match = "source text"
PS >$replacement = "replacement text"
PS >
PS >$content = Get-Content $filename
PS >$content
This is some source text that we want
to replace. One of the things you may need
to be careful careful about with Source
Text is when it spans multiple lines,
and may have different Source Text
capitalization.
PS >
PS >$content = $content -creplace $match,$replacement
PS >$content
This is some replacement text that we want
to replace. One of the things you may need
to be careful careful about with Source
Text is when it spans multiple lines,
and may have different Source Text
capitalization.
PS >$content | Set-Content $filename

144 | Chapter 7: Simple Files

Notice that the solution uses the –creplace operator to replace text in
a case-sensitive manner. This is almost always what you will want to
do, as the replacement text uses the exact capitalization that you pro-
vide. If the text you want to replace is capitalized in several different
ways (as in the term “Source Text” from the solution), then search and
replace several times with the different possible capitalizations.

Example 7-4 illustrates what is perhaps the simplest (but actually most common)
scenario:

• You work with an ASCII text file.

• You replace some literal text with a literal text replacement.

• You don’t worry that the text match might span multiple lines.

• Your text file is relatively small.

If some of those assumptions don’t hold true, then this discussion shows you how to
tailor the way you search and replace within this file.

Work with files encoded in Unicode or another (OEM) code page

By default, the Set-Content cmdlet assumes that you want the output file to contain
plain ASCII text. If you work with a file in another encoding (for example, Unicode
or an OEM code page such as Cyrillic), use the –Encoding parameter of the Out-File
cmdlet to specify that:

$content | Out-File –Encoding Unicode $filename
$content | Out-File –Encoding OEM $filename

Replace text using a pattern instead of plain text

Although it is most common to replace one literal string with another literal string, you
might want to replace text according to a pattern in some advanced scenarios. One
example might be swapping first name and last name. PowerShell supports this type of
replacement through its support of regular expressions in its replacement operator:

PS >$content = Get-Content names.txt
PS >$content
John Doe
Mary Smith
PS >$content -replace '(.*) (.*)','$2, $1'
Doe, John
Smith, Mary

Replace text that spans multiple lines

The Get-Content cmdlet used in the solution retrieves a list of lines from the file.
When you use the –replace operator against this array, it replaces your text in each
of those lines individually. If your match spans multiple lines, as shown between

7.6 Search and Replace Text in a File | 145

lines 3 and 4 in Example 7-4, the –replace operator will be unaware of the match and
will not perform the replacement.

If you want to replace text that spans multiple lines, then it becomes necessary to
stop treating the input text as a collection of lines. Once you stop treating the input
as a collection of lines, it is also important to use a replacement expression that can
ignore line breaks, as shown in Example 7-5.

The first and second lines of Example 7-5 read the entire content of the file as a sin-
gle string. It does this by calling the [System.IO.File]::ReadAllText() method from
the .NET Framework, since the Get-Content cmdlet splits the content of the file into
individual lines.

The third line of this solution replaces the text by using a regular expression pat-
tern. The section, Source(\s*)Text, scans for the word Source followed optionally by
some whitespace, followed by the word Text. Since the whitespace portion of the
regular expression has parentheses around it, we want to remember exactly what
that whitespace was. By default, regular expressions do not let newline characters
count as whitespace, so the first portion of the regular expression uses the single-line
option (?s) to allow newline characters to count as whitespace. The replacement
portion of the –replace operator replaces that match with Replacement, followed by
the exact whitespace from the match that we captured ($1), followed by Text. For
more information, see “Simple Operators” in Appendix A.

Replace text in large files

The approaches used so far store the entire contents of the file in memory as they
replace the text in them. Once we’ve made the replacements in memory, we write the
updated content back to disk. This works well when replacing text in small,
medium, and even moderately large files. For extremely large files (for example,
more than several hundred megabytes), using this much memory may burden your
system and slow down your script. To solve that problem, you can work on the files
line-by-line, rather than with the entire file at once.

Since you’re working with the file line-by-line, it will still be in use when you try to
write replacement text back into it. You can avoid this problem if you write the
replacement text into a temporary file until you’ve finished working with the main
file. Once you’ve finished scanning through our file, you can delete it and replace it
with the temporary file.

Example 7-5. Replacing text across multiple lines in a file

$filename = Get-Item file.txt
$singleLine = [System.IO.File]::ReadAllText($filename.FullName)
$content = $singleLine -creplace "(?s)Source(\s*)Text",'Replacement$1Text'

146 | Chapter 7: Simple Files

$filename = "file.txt"
$temporaryFile = [System.IO.Path]::GetTempFileName()

$match = "source text"
$replacement = "replacement text"

Get-Content $filename |
 Foreach-Object { $_ -creplace $match,$replacement | Add-Content $temporaryFile }

Remove-Item $filename
Move-Item $temporaryFile $filename

See Also
• “Simple Operators” in Appendix A

147

Chapter 8 CHAPTER 8

Structured Files9

8.0 Introduction
In the world of text-only system administration, managing structured files is often a
pain. For example, working with (or editing) an XML file means either loading it into
an editor to modify by hand, or writing a custom tool that can do that for you. Even
worse, it may mean modifying the file as though it were plain text while hoping to
not break the structure of the XML itself.

In that same world, working with a file in CSV format means going through the file
yourself, splitting each line by the commas in it. It’s a seemingly great approach,
until you find yourself faced with anything but the simplest of data.

Structure and structured files don’t come only from other programs, either. When
writing scripts, one common goal is to save structured data so that you can use it
later. In most scripting (and programming) languages, this requires that you design a
data structure to hold that data, design a way to store and retrieve it from disk, and
bring it back to a usable form when you want to work with it again.

Fortunately, working with XML, CSVs, and even your own structured files becomes
much easier with PowerShell at your side.

8.1 Access Information in an XML File

Problem
You want to work with and access information in an XML file.

Solution
Use PowerShell’s XML cast to convert the plain-text XML into a form that you can
more easily work with. In this case, the RSS feed downloaded from the Windows
PowerShell blog:

PS >$xml = [xml] (Get-Content powershell_blog.xml)

148 | Chapter 8: Structured Files

See Recipe 9.1, “Download a File from the Internet” for an example of
how to use PowerShell to download this file!

Like other rich objects, PowerShell displays the properties of the XML as you
explore. These properties are child nodes and attributes in the XML, as shown by
Example 8-1.

If more than one node shares the same name (as in the item nodes of an RSS feed),
then the property name represents a collection of nodes:

PS >($xml.rss.channel.item).Count
15

You can access those items individually, like you would normally work with an
array, as shown in Example 8-2.

Example 8-1. Accessing properties of an XML document

PS >$xml

xml xml-stylesheet rss
--- -------------- ---
 rss

PS >$xml.rss

version : 2.0
dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/
channel : channel

Example 8-2. Accessing individual items in an XML document

PS >($xml.rss.channel.item)[0]

description : <P>Since a lot of people have been asking about it, yes - my
 (...)
guid : guid
title : "Windows PowerShell in Action" has been released
comment : http://blogs.msdn.com/powershell/rsscomments.aspx?PostID=171
 8281
link : http://blogs.msdn.com/powershell/archive/2007/02/19/windows-
 powershell-in-action-has-been-released.aspx
pubDate : Mon, 19 Feb 2007 20:05:00 GMT
comments : {4, http://blogs.msdn.com/powershell/comments/1718281.aspx}
commentRss : http://blogs.msdn.com/powershell/commentrss.aspx?PostID=1718
 281
creator : PowerShellTeam

8.1 Access Information in an XML File | 149

You can access properties of those elements like you would normally work with an
object:

PS >($xml.rss.channel.item)[0].title
"Windows PowerShell in Action" has been released

Since these are rich PowerShell objects, Example 8-3 demonstrates how you can use
PowerShell’s advanced object-based cmdlets for further work, such as sorting and
filtering.

Discussion
PowerShell’s native XML support provides an excellent way to easily navigate and
access XML files. By exposing the XML hierarchy as properties, you can perform
most tasks without having to resort to text-only processing, or custom tools.

In fact, PowerShell’s support for interaction with XML goes beyond just presenting
your data in an object-friendly way. The objects created by the [xml] cast in fact rep-
resent fully featured System.Xml.XmlDocument objects from the .NET Framework.
Each property of the resulting objects represents a System.Xml.XmlElement object
from the .NET Framework, as well. The underlying objects provide a great deal of
additional functionality that you can use to perform both common and complex
tasks on XML files.

The underlying System.Xml.XmlDocument and System.Xml.XmlElement objects that sup-
port your XML provide useful properties in their own right, as well: Attributes,
Name, OuterXml, and more. Since these properties may interfere with the way you
access properties from your XML file, PowerShell hides them by default. To access

Example 8-3. Sorting and filtering items in an XML document

PS >$xml.rss.channel.item | Sort-Object title | Select-Object title

title

"Windows PowerShell in Action" has been released
Controlling PowerShell Function (Re)Definition
Execution Policy and Vista
Executive Demo
It's All about Economics
NetCmdlets Beta 2 is now Available.
Payette Podcast
Port 25 interview with Bruce Payette
PowerShell Benefits Over COM Scripting
PowerShell Cheat Sheet - Now in XPS
PowerShell Tip: How to "shift" arrays
Processing text, files and XML
Virtual Machine Manager's PowerShell Support
Windows PowerShell 1.0 for Windows Vista
Working With WMI Events

150 | Chapter 8: Structured Files

them, use the PsBase property on any node. The PsBase property works on any object
in PowerShell, and represents the object underneath the PowerShell abstraction:

PS >$xml.rss.psbase.Attributes

#text

2.0
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/slash/
http://wellformedweb.org/CommentAPI/

For more information about using the underlying.NET objects for more advanced
tasks, see the following section, Recipe 8.2, “Perform an XPath Query Against an
XML File” and Recipe 8.3, “Modify Data in an XML File.”

For more information about working with XML in PowerShell, see “XML” in
Appendix A.

See Also
• Recipe 8.2, “Perform an XPath Query Against an XML File”

• Recipe 8.3, “Modify Data in an XML File”

• Recipe 9.1, “Download a File from the Internet”

• “XML” in Appendix A

8.2 Perform an XPath Query Against an XML File

Problem
You want to perform an advanced query against an XML file, using XML’s standard
XPath syntax.

Solution
Use PowerShell’s XML cast to convert the plain-text XML into a form that you can
more easily work with. In this case, the RSS feed downloaded from the Windows
PowerShell blog:

PS >$xml = [xml] (Get-Content powershell_blog.xml)

Then use the SelectNodes() method on that variable to perform the query. For exam-
ple, to find all post titles shorter than 20 characters:

PS >$query = "/rss/channel/item[string-length(title) < 20]/title"
PS >$xml.SelectNodes($query)

8.3 Modify Data in an XML File | 151

#text

Payette Podcast
Executive Demo

Discussion
Although a language all its own, the XPath query syntax provides a powerful, XML-
centric way to write advanced queries for XML files.

For simpler queries, you may find PowerShell’s object-based XML navigation con-
cepts easier to work with. For more information about working with XML through
PowerShell’s XML type, see “XML” in Appendix A.

See Also

• “XML” in Appendix A

8.3 Modify Data in an XML File

Problem
You want to use PowerShell to modify the data in an XML file.

Solution
To modify data in an XML file, load the file into PowerShell’s XML data type,
change the content you want, and then save the file back to disk. Example 8-4 dem-
onstrates this approach.

Example 8-4. Modifying an XML file from PowerShell

PS >## Store the filename
PS >$filename = (Get-Item phone.xml).FullName
PS >
PS >## Get the content of the file, and load it
PS >## as XML
PS >Get-Content $filename
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
PS >$phoneBook = [xml] (Get-Content $filename)
PS >

152 | Chapter 8: Structured Files

Discussion
In the preceding solution, you change Lee’s phone number (which was the “text”
portion of the XML’s original first Phone node) from 555-1212 to 555-1214. You also
change the type of the phone number (which was an attribute of the Phone node)
from "home" to "mobile".

Adding new information to the XML is nearly as easy. To add information to an
XML file, you need to add it as a child node to another of the nodes in the file. The
easiest way to get that child node is to write the string that represents the XML and
then create a temporary PowerShell XML document from that. From that docu-
ment, you use the main XML document’s ImportNode() function to import the node
you care about—specifically, the Phone node in this example.

Once we have the child node, you need to decide where to put it. Since we want this
Phone node to be a child of the Person node for Lee, we will place it there. To add a
child node ($newNode, in Example 8-4) to a destination node ($person, in the exam-
ple), use the AppendChild() method from the destination node.

PS >## Get the part with data we want to change
PS >$person = $phoneBook.AddressBook.Person[0]
PS >
PS >## Change the text part of the information,
PS >## and the type (which was an attribute)
PS >$person.Phone[0]."#text" = "555-1214"
PS >$person.Phone[0].type = "mobile"
PS >
PS >## Add a new phone entry
PS >$newNumber = [xml] '<Phone type="home">555-1215</Phone>'
PS >$newNode = $phoneBook.ImportNode($newNumber.Phone, $true)
PS >[void] $person.AppendChild($newNode)
PS >
PS >## Save the file to disk
PS >$phoneBook.Save($filename)
PS >Get-Content $filename
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="mobile">555-1214</Phone>
 <Phone type="work">555-1213</Phone>
 <Phone type="home">555-1215</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

Example 8-4. Modifying an XML file from PowerShell (continued)

8.4 Easily Import and Export Your Structured Data | 153

The Save() method on the XML document allows you to save to more
than just files. For a quick way to convert XML into a “beautified”
form, save it to the console:

$phoneBook.Save([Console]::Out)

Finally, we save the XML back to the file from which it came.

8.4 Easily Import and Export Your Structured Data

Problem
You have a set of data (such as a hashtable or array) and want to save it to disk so
that you can use it later. Conversely, you have saved structured data to a file and
want to import it so that you can use it.

Solution
Use PowerShell’s Export-CliXml cmdlet to save structured data to disk, and the
Import-CliXml cmdlet to import it again from disk.

For example, imagine storing a list of your favorite directories in a hashtable, so that
you can easily navigate your system with a “Favorite CD” function. Example 8-5
shows this function.

Unfortunately, the $favorites variable vanishes whenever you close PowerShell.

Example 8-5. A function that requires persistent structured data

PS >$favorites = @{}
PS >$favorites["temp"] = "c:\temp"
PS >$favorites["music"] = "h:\lee\my music"
PS >function fcd {
>> param([string] $location) Set-Location $favorites[$location]
>> }
>>
PS >Get-Location

Path

HKLM:\software

PS >fcd temp
PS >Get-Location

Path

C:\temp

154 | Chapter 8: Structured Files

To get around this, you could recreate the $favorites variable in your profile, but
another way is to export it directly to a file. This command assumes that you have
already created a profile, and places the file in the same location as that profile:

PS >$filename = Join-Path (Split-Path $profile) favorites.clixml
PS >$favorites | Export-CliXml $filename
PS >$favorites = $null
PS >$favorites
PS >

Once it’s on disk, you can reload it using the Import-CliXml cmdlet, as shown in
Example 8-6.

Discussion
PowerShell provides the Export-CliXml and Import-CliXml cmdlets to let you easily
move structured data into and out of files. These cmdlets accomplish this in a very
data-centric and future-proof way—by storing only the names, values, and basic data
types for the properties of that data.

By default, PowerShell stores one level of data: all directly accessi-
ble simple properties (such as the WorkingSet of a process) but a
plain-text representation for anything deeper (such as a process’s
Threads collection). For information on how to control the depth of
this export, type Get-Help Export-CliXml and see the explanation of
the –Depth parameter.

After you import data saved by Export-CliXml, you again have access to the proper-
ties and values from the original data. PowerShell converts some objects back to their
fully featured objects (such as System.DateTime objects), but for the most part does
not retain functionality (for example, methods) from the original objects.

Example 8-6. Restoring structured data from disk

PS >$favorites = Import-CliXml $filename
PS >$favorites

Name Value
---- -----
music h:\lee\my music
temp c:\temp

PS >fcd music
PS >Get-Location

Path

H:\lee\My Music

8.5 Store the Output of a Command in a CSV File | 155

8.5 Store the Output of a Command in a CSV File

Problem
You want to store the output of a command in a CSV file for later processing. This is
helpful when you want to export the data for later processing outside PowerShell.

Solution
Use PowerShell’s Export-Csv cmdlet to save the output of a command into a CSV
file. For example, to create an inventory of the patches applied to a system by KB
number (on pre-Vista systems):

cd $env:WINDIR
Get-ChildItem KB*.log | Export-Csv c:\temp\patch_log.csv

You can then review this patch log in a tool such as Excel, mail it to others, or do
whatever else you might want to do with a CSV file.

Discussion
The CSV file format is one of the most common formats for exchanging semistruc-
tured data between programs and systems.

PowerShell’s Export-Csv cmdlet provides an easy way to export data from the Power-
Shell environment, while still allowing you to keep a fair amount of your data’s struc-
ture. When PowerShell exports your data to the CSV, it creates a row for each object
that you provide. For each row, PowerShell creates columns in the CSV that repre-
sent the values of your object’s properties.

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. If a property on your object isn’t actually a string, PowerShell con-
verts it to a string for you. Having PowerShell convert rich property values (such as
integers) to strings, however, does mean that a certain amount of information is not
preserved. If your ultimate goal is to load this unmodified data again in PowerShell,
the Export-CliXml cmdlet provides a much better alternative. For more information
about the Export-CliXml cmdlet, see Recipe 8.4, “Easily Import and Export Your
Structured Data.”

For more information on how to import data from a CSV file into PowerShell, see
the following section, Recipe 8.6, “Import Structured Data from a CSV File.”

See Also
• Recipe 8.4, “Easily Import and Export Your Structured Data”

• Recipe 8.6, “Import Structured Data from a CSV File”

156 | Chapter 8: Structured Files

8.6 Import Structured Data from a CSV File

Problem
You want to import structured data that has been stored in a CSV file. This is help-
ful when you want to use structured data created by another program, or structured
data modified by a person.

Solution
Use PowerShell’s Import-Csv cmdlet to import structured data from a CSV file.

For example, imagine that you previously exported an inventory of the patches
applied to a pre-Vista system by KB number:

cd $env:WINDIR
Get-ChildItem KB*.log | Export-Csv c:\temp\patch_log.csv

Somebody reviewed the CSV, and kept only lines from patch logs that they would
like to review further. You would like to copy those actual patch logs to a directory
so that you can share them.

PS >Import-Csv C:\temp\patch_log_reviewed.csv | Foreach-Object {
>> Copy-Item –LiteralPath $_.FullName –Destination c:\temp\sharedlogs\ }
>>

Discussion
As mentioned in Recipe 8.5, “Store the Output of a Command in a CSV File,” the
CSV file format is one of the most common formats for exchanging semistructured
data between programs and systems.

PowerShell’s Import-Csv cmdlet provides an easy way to import semistructured data to
the PowerShell environment from other programs. When PowerShell imports your
data from the CSV, it creates a new object for each row in the CSV. For each object,
PowerShell creates properties on the object from the values of the columns in the CSV.

The preceding solution uses the Foreach-Object cmdlet to pass each
object to the Copy-Item cmdlet. For each item, it uses the incoming
object’s FullName property as the source path, and uses c:\temp\
sharedlogs\ as the destination. However, the CSV includes a PSPath
property that represents the source, and most cmdlets support PSPath
as an alternative (alias) parameter name for –LiteralPath. Because of
this, we could have also written

PS >Import-Csv C:\temp\patch_log_reviewed.csv |

>> Copy-Item -Destination c:\temp\sharedlogs\

>>

For more information about this feature, see Recipe 2.5, “Automate
Data-Intensive Tasks.”

8.7 Use Excel to Manage Command Output | 157

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. When you import data from a CSV, properties that look like dates
will still only be strings. Properties that look like numbers will only be strings. Prop-
erties that look like any sort of rich data type will only be strings. That means that
sorting on any property will always be an alphabetical sort, which is usually not the
same as the sorting rules for the rich data types that the property might look like.

If your ultimate goal is to load rich unmodified data from something that you’ve pre-
viously exported from PowerShell, the Import-CliXml cmdlet provides a much better
alternative. For more information about the Import-CliXml cmdlet, see Recipe 8.4,
“Easily Import and Export Your Structured Data.”

For more information on how to export data from PowerShell to a CSV file into
PowerShell, see Recipe 8.5, “Store the Output of a Command in a CSV File.”

See Also
• Recipe 2.5, “Automate Data-Intensive Tasks”

• Recipe 8.4, “Easily Import and Export Your Structured Data”

• Recipe 8.5, “Store the Output of a Command in a CSV File”

8.7 Use Excel to Manage Command Output

Problem
You want to use Excel to manipulate or visualize the output of a command.

Solution
Use PowerShell’s Export-Csv cmdlet to save the output of a command in a CSV file,
and then load that CSV in Excel. If you have Excel associated with .CSV files, the
Invoke-Item cmdlet launches Excel when you provide it with a .CSV file as an argu-
ment.

Example 8-7 demonstrates how to generate a CSV containing the disk usage for sub-
directories of the current directory.

Example 8-7. Using Excel to visualize disk usage on the system

PS >$filename = "c:\temp\diskusage.csv"
PS >
PS >$output = Get-ChildItem | Where-Object { $_.PsIsContainer } |
>> Select-Object Name,
>> @{ Name="Size";
>> Expression={ ($_ | Get-ChildItem -Recurse |
>> Measure-Object -Sum Length).Sum + 0 } }
>>

158 | Chapter 8: Structured Files

In Excel, manipulate or format the data as you wish. As Figure 8-1 shows. we can
manually create a pie chart:

PS >$output | Export-Csv $filename
PS >
PS >Invoke-Item $filename

Figure 8-1. Visualizing data in Excel

Example 8-7. Using Excel to visualize disk usage on the system (continued)

8.7 Use Excel to Manage Command Output | 159

Discussion
Although used only as a demonstration, Example 8-7 packs quite a bit into just a few
lines.

The first Get-ChildItem line gets a list of all the files in the current directory and uses
the Where-Object cmdlet to restrict those to directories. For each of those directories,
you use the Select-Object cmdlet to pick out the Name and Size of that directory.

Directories don’t have a Size property though. To get that, we use Select-Object’s
hashtable syntax to generate a calculated property. This calculated property (as
defined by the Expression script block) uses the Get-ChildItem and Measure-Object
cmdlets to add up the Length of all files in the given directory.

For more information about creating and working with calculated properties, see
Recipe 3.11, “Add Custom Methods and Properties to Objects.”

See Also
• Recipe 3.11, “Add Custom Methods and Properties to Objects”

160

Chapter 9CHAPTER 9

Internet-Enabled Scripts 10

9.0 Introduction
Although PowerShell provides an enormous benefit even when your scripts interact
only with the local system, working with data sources from the Internet opens excit-
ing and unique opportunities. For example, you might download files or informa-
tion from the Internet, interact with a web service, store your output as HTML, or
even send an email that reports the results of a long-running script.

Through its cmdlets and access to the networking support in the .NET Framework,
PowerShell provides ample opportunities for Internet-enabled administration.

9.1 Download a File from the Internet

Problem
You want to download a file from a web site on the Internet.

Solution
Use the DownloadFile() method from the .NET Framework’s System.Net.WebClient
class to download a file:

PS >$source = "http://www.leeholmes.com/favicon.ico"
PS >$destination = "c:\temp\favicon.ico"
PS >
PS >$wc = New-Object System.Net.WebClient
PS >$wc.DownloadFile($source, $destination)

Discussion
The System.Net.WebClient class from the .NET Framework lets you easily upload
and download data from remote web servers.

9.2 Download a Web Page from the Internet | 161

The WebClient class acts much like a web browser, in that you can specify a user
agent, proxy (if your outgoing connection requires one), and even credentials.

All web browsers send a user agent identifier along with their web request. This iden-
tifier tells the web site what application is making the request—such as Internet
Explorer, Firefox, or an automated crawler from a search engine. Many web sites
check this user agent identifier to determine how to display the page. Unfortunately,
many fail entirely if they can’t determine the user agent for the incoming request. To
make the System.Net.WebClient identify itself as Internet Explorer, use the following
commands, instead:

$userAgent = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.2;)"
$wc = New-Object System.Net.WebClient
$wc.Headers.Add("user-agent", $userAgent)

Notice that the solution uses a fully qualified path for the destination file. This is an
important step, as the DownloadFile() method saves its files to the directory in which
PowerShell.exe started (the root of your user profile directory by default) otherwise.

You can use the DownloadFile() method to download web pages just as easily as you
download files—you need to supply only an URL as a source (such as http://blogs.
msdn.com/powershell/rss.xml) instead of a filename. If you ultimately intend to parse
or read through the downloaded page, the DownloadString() method may be more
appropriate.

For more information on how to use download and parse web pages, see the follow-
ing section, Recipe 9.2, “Download a Web Page from the Internet.”

See Also
• Recipe 9.2, “Download a Web Page from the Internet”

9.2 Download a Web Page from the Internet

Problem
You want to download a web page from the Internet and work with the content as a
plain string.

Solution
Use the DownloadString() method from the .NET Framework’s System.Net.WebClient
class to download a web page or plain text file into a string.

PS >$source = "http://blogs.msdn.com/powershell/rss.xml"
PS >
PS >$wc = New-Object System.Net.WebClient
PS >$content = $wc.DownloadString($source)

162 | Chapter 9: Internet-Enabled Scripts

Discussion
Although web services are becoming increasingly popular, they are still far less com-
mon than web pages that display useful data. Because of this, retrieving data from
services on the Internet often comes by means of screen scraping: downloading the
HTML of the web page and then carefully separating out the content you want from
the vast majority of the content that you do not.

The technique of screen scraping has been around much longer than
the Internet! As long as computer systems have generated output
designed primarily for humans, screen scraping tools have risen to
make this output available to other computer programs.

Unfortunately, screen scraping is an error-prone way to extract content. If the web
page authors change the underlying HTML, your code will usually stop working cor-
rectly. If the site’s HTML is written as valid XHTML, you may be able to use Power-
Shell’s built in XML support to more easily parse the content.

For more information about PowerShell’s built-in XML support, see Recipe 8.1,
“Access Information in an XML File.”

Despite its fragility, pure screen scraping is often the only alternative. In
Example 9-1, you use this approach to easily fetch Encarta “Instant Answers” from
MSN Search. If the script no longer works when you run it, I apologize—although it
does demonstrate the perils of screen scraping.

Example 9-1. Get-Answer.ps1

##
Get-Answer.ps1
##
Use Encarta's Instant Answers to answer your question
##
Example:
Get-Answer "What is the population of China?"
##
param([string] $question = $(throw "Please ask a question."))

function Main
{
 ## Load the System.Web.HttpUtility DLL, to let us URLEncode
 [void] [System.Reflection.Assembly]::LoadWithPartialName("System.Web")

 ## Get the web page into a single string with newlines between
 ## the lines.
 $encoded = [System.Web.HttpUtility]::UrlEncode($question)
 $url = "http://search.live.com/results.aspx?q=$encoded"
 $text = (new-object System.Net.WebClient).DownloadString($url)

9.3 Program: Get-PageUrls | 163

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 8.1, “Access Information in an XML File”

9.3 Program: Get-PageUrls
When working with HTML, it is common to require advanced regular expressions
that separate the content you care about from the content you don’t. A perfect exam-
ple of this is extracting all the HTML links from a web page.

 ## Get the answer with annotations
 $startIndex = $text.IndexOf('')
 $endIndex = $text.IndexOf('function YNC')

 ## If we found a result, then filter the result
 if(($startIndex -ge 0) -and ($endIndex -ge 0))
 {
 $partialText = $text.Substring($startIndex, $endIndex - $startIndex)

 ## Very fragile screen scraping here
 $pattern = '<script.+?<div (id="results"|class="answer_fact_body")>'
 $partialText = $partialText -replace $pattern,"`n"
 $partialText = $partialText -replace '',"`n"
 $partialText = $partialText -replace '<BR ?/>',"`n"

 $partialText = clean-html $partialText
 $partialText = $partialText -replace "`n`n", "`n"

 "`n" + $partialText.Trim()
 }
 else
 {
 "`nNo answer found."
 }
}

Clean HTML from a text chunk
function clean-html ($htmlInput)
{
 $tempString = [Regex]::Replace($htmlInput, "<[^>]*>", "")
 $tempString.Replace(" ", "")
}

. Main

Example 9-1. Get-Answer.ps1 (continued)

164 | Chapter 9: Internet-Enabled Scripts

Links come in many forms, depending on how lenient you want to be. They may be
well-formed according to the various HTML standards. They may use relative paths,
or they may use absolute paths. They may place double quotes around the URL, or
they may place single quotes around the URL. If you’re really unlucky, they may
accidentally include quotes on only one side of the URL.

Example 9-2 demonstrates some approaches for dealing with this type of advanced
parsing task. Given a web page that you’ve downloaded from the Internet, it extracts
all links from the page and returns a list of the URLs in that page. It also fixes URLs
that were originally written as relative URLs (for example, /file.zip) to include the
server from which they originated.

Example 9-2. Get-PageUrls.ps1

##
Get-PageUrls.ps1
##
Parse all of the URLs out of a given file.
##
Example:
Get-PageUrls microsoft.html http://www.microsoft.com
##
##
param(
 ## The filename to parse
 [string] $filename = $(throw "Please specify a filename."),

 ## The URL from which you downloaded the page.
 ## For example, http://www.microsoft.com
 [string] $base = $(throw "Please specify a base URL."),

 ## The Regular Expression pattern with which to filter
 ## the returned URLs
 [string] $pattern = ".*"
)

Load the System.Web DLL so that we can decode URLs
[void] [Reflection.Assembly]::LoadWithPartialName("System.Web")

Defines the regular expression that will parse an URL
out of an anchor tag.
$regex = "<\s*a\s*[^>]*?href\s*=\s*[`"']*([^`"'>]+)[^>]*?>"

Parse the file for links
function Main
{
 ## Do some minimal source URL fixups, by switching backslashes to
 ## forward slashes
 $base = $base.Replace("\", "/")

 if($base.IndexOf("://") -lt 0)

9.3 Program: Get-PageUrls | 165

 {
 throw "Please specify a base URL in the form of " +
 "http://server/path_to_file/file.html"
 }

 ## Determine the server from which the file originated. This will
 ## help us resolve links such as "/somefile.zip"
 $base = $base.Substring(0,$base.LastIndexOf("/") + 1)
 $baseSlash = $base.IndexOf("/", $base.IndexOf("://") + 3)
 $domain = $base.Substring(0, $baseSlash)

 ## Put all of the file content into a big string, and
 ## get the regular expression matches
 $content = [String]::Join(' ', (get-content $filename))
 $contentMatches = @(GetMatches $content $regex)

 foreach($contentMatch in $contentMatches)
 {
 if(-not ($contentMatch -match $pattern)) { continue }

 $contentMatch = $contentMatch.Replace("\", "/")

 ## Hrefs may look like:
 ## ./file
 ## file
 ## ../../../file
 ## /file
 ## url
 ## We'll keep all of the relative paths, as they will resolve.
 ## We only need to resolve the ones pointing to the root.
 if($contentMatch.IndexOf("://") -gt 0)
 {
 $url = $contentMatch
 }
 elseif($contentMatch[0] -eq "/")
 {
 $url = "$domain$contentMatch"
 }
 else
 {
 $url = "$base$contentMatch"
 $url = $url.Replace("/./", "/")
 }

 ## Return the URL, after first removing any HTML entities
 [System.Web.HttpUtility]::HtmlDecode($url)
 }
}

function GetMatches([string] $content, [string] $regex)

Example 9-2. Get-PageUrls.ps1 (continued)

166 | Chapter 9: Internet-Enabled Scripts

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

9.4 Program: Connect-WebService
Although screen scraping (parsing the HTML of a web page) is the most common
way to obtain data from the Internet, web services are becoming increasingly com-
mon. Web services provide a significant advantage over HTML parsing, as they are
much less likely to break when the web designer changes minor features in a design.

The only benefit to web services isn’t their more stable interface, however. When
working with web services, the .NET Framework lets you generate proxies that let
you interact with the web service as easily as you would work with a regular .NET
object. That is because to you, the web service user, these proxies act almost exactly
the same as any other .NET object. To call a method on the web service, simply call
a method on the proxy.

The primary differences you will notice when working with a web ser-
vice proxy (as opposed to a regular .NET object) are the speed and
Internet connectivity requirements. Depending on conditions, a
method call on a web service proxy could easily take several seconds
to complete. If your computer (or the remote computer) experiences
network difficulties, the call might even return a network error mes-
sage (such as a timeout) instead of the information you had hoped for.

{
 $returnMatches = New-Object System.Collections.ArrayList

 ## Match the regular expression against the content, and
 ## add all trimmed matches to our return list
 $resultingMatches = [Regex]::Matches($content, $regex, "IgnoreCase")
 foreach($match in $resultingMatches)
 {
 $cleanedMatch = $match.Groups[1].Value.Trim()
 [void] $returnMatches.Add($cleanedMatch)
 }

 $returnMatches
}

. Main

Example 9-2. Get-PageUrls.ps1 (continued)

9.4 Program: Connect-WebService | 167

Example 9-3 lets you connect to a remote web service if you know the location of its
service description file (WSDL). It generates the web service proxy for you, allowing
you to interact with it as you would any other .NET object.

Example 9-3. Connect-WebService.ps1

##
Connect-WebService.ps1
##
Connect to a given web service, and create a type that allows you to
interact with that web service.
##
Example:
##
$wsdl = "http://terraserver.microsoft.com/TerraService2.asmx?WSDL"
$terraServer = Connect-WebService $wsdl
$place = New-Object Place
$place.City = "Redmond"
$place.State = "WA"
$place.Country = "USA"
$facts = $terraserver.GetPlaceFacts($place)
$facts.Center
##
param(
 [string] $wsdlLocation = $(throw "Please specify a WSDL location"),
 [string] $namespace,
 [Switch] $requiresAuthentication)

Create the web service cache, if it doesn't already exist
if(-not (Test-Path Variable:\Lee.Holmes.WebServiceCache))
{
 ${GLOBAL:Lee.Holmes.WebServiceCache} = @{}
}

Check if there was an instance from a previous connection to
this web service. If so, return that instead.
$oldInstance = ${GLOBAL:Lee.Holmes.WebServiceCache}[$wsdlLocation]
if($oldInstance)
{
 $oldInstance
 return
}

Load the required Web Services DLL
[void] [Reflection.Assembly]::LoadWithPartialName("System.Web.Services")

Download the WSDL for the service, and create a service description from
it.
$wc = New-Object System.Net.WebClient

if($requiresAuthentication)
{
 $wc.UseDefaultCredentials = $true
}

168 | Chapter 9: Internet-Enabled Scripts

$wsdlStream = $wc.OpenRead($wsdlLocation)

Ensure that we were able to fetch the WSDL
if(-not (Test-Path Variable:\wsdlStream))
{
 return
}

$serviceDescription =
 [Web.Services.Description.ServiceDescription]::Read($wsdlStream)
$wsdlStream.Close()

Ensure that we were able to read the WSDL into a service description
if(-not (Test-Path Variable:\serviceDescription))
{
 return
}

Import the web service into a CodeDom
$serviceNamespace = New-Object System.CodeDom.CodeNamespace
if($namespace)
{
 $serviceNamespace.Name = $namespace
}

$codeCompileUnit = New-Object System.CodeDom.CodeCompileUnit
$serviceDescriptionImporter =
 New-Object Web.Services.Description.ServiceDescriptionImporter
$serviceDescriptionImporter.AddServiceDescription(
 $serviceDescription, $null, $null)
[void] $codeCompileUnit.Namespaces.Add($serviceNamespace)
[void] $serviceDescriptionImporter.Import(
 $serviceNamespace, $codeCompileUnit)

Generate the code from that CodeDom into a string
$generatedCode = New-Object Text.StringBuilder
$stringWriter = New-Object IO.StringWriter $generatedCode
$provider = New-Object Microsoft.CSharp.CSharpCodeProvider
$provider.GenerateCodeFromCompileUnit($codeCompileUnit, $stringWriter, $null)

Compile the source code.
$references = @("System.dll", "System.Web.Services.dll", "System.Xml.dll")
$compilerParameters = New-Object System.CodeDom.Compiler.CompilerParameters
$compilerParameters.ReferencedAssemblies.AddRange($references)
$compilerParameters.GenerateInMemory = $true

$compilerResults =
 $provider.CompileAssemblyFromSource($compilerParameters, $generatedCode)

Write any errors if generated.
if($compilerResults.Errors.Count -gt 0)

Example 9-3. Connect-WebService.ps1 (continued)

9.4 Program: Connect-WebService | 169

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

{
 $errorLines = ""
 foreach($error in $compilerResults.Errors)
 {
 $errorLines += "`n`t" + $error.Line + ":`t" + $error.ErrorText
 }

 Write-Error $errorLines
 return
}
There were no errors. Create the web service object and return it.
else
{
 ## Get the assembly that we just compiled
 $assembly = $compilerResults.CompiledAssembly

 ## Find the type that had the WebServiceBindingAttribute.
 ## There may be other "helper types" in this file, but they will
 ## not have this attribute
 $type = $assembly.GetTypes() |
 Where-Object { $_.GetCustomAttributes(
 [System.Web.Services.WebServiceBindingAttribute], $false) }

 if(-not $type)
 {
 Write-Error "Could not generate web service proxy."
 return
 }

 ## Create an instance of the type, store it in the cache,
 ## and return it to the user.
 $instance = $assembly.CreateInstance($type)

 ## Many services that support authentication also require it on the
 ## resulting objects
 if($requiresAuthentication)
 {
 if(@($instance.PsObject.Properties |
 where { $_.Name -eq "UseDefaultCredentials" }).Count -eq 1)
 {
 $instance.UseDefaultCredentials = $true
 }
 }

 ${GLOBAL:Lee.Holmes.WebServiceCache}[$wsdlLocation] = $instance

 $instance
}

Example 9-3. Connect-WebService.ps1 (continued)

170 | Chapter 9: Internet-Enabled Scripts

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

9.5 Export Command Output As a Web Page

Problem
You want to export the results of a command as a web page so that you can post it to
a web server.

Solution
Use PowerShell’s ConvertTo-Html cmdlet to convert command output into a web
page. For example, to create a quick HTML summary of PowerShell’s commands:

PS >$filename = "c:\temp\help.html"
PS >
PS >$commands = Get-Command | Where { $_.CommandType -ne "Alias" }
PS >$summary = $commands | Get-Help | Select Name,Synopsis
PS >$summary | ConvertTo-Html | Set-Content $filename

Discussion
When you use the ConvertTo-Html cmdlet to export command output to a file, Pow-
erShell generates an HTML table that represents the command output. In the table,
it creates a row for each object that you provide. For each row, PowerShell creates
columns to represent the values of your object’s properties.

The ConvertTo-Html cmdlet lets you customize this table to some degree through
parameters that allow you to add custom content to the head and body of the result-
ing page.

For more information about the ConvertTo-Html cmdlet, type Get-Help ConvertTo-
Html.

9.6 Program: Send an Email
Example 9-4 shows how to easily send email messages from your scripts.

In addition to the fields shown in the script, the System.Net.Mail.MailMessage class
supports properties that let you add attachments, set message priority, and much
more. For more information about working with classes from the .NET Framework,
see Recipe 3.4, “Work with .NET Objects.”

9.6 Program: Send an Email | 171

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 3.4, “Work with .NET Objects”

Example 9-4. Send-MailMessage.ps1

##
##
Send-MailMessage.ps1
##
Illustrate the techniques used to send an email in PowerShell.
##
Example:
##
PS >$body = @"
>> Hi from another satisfied customer of The PowerShell Cookbook!
>> "@
>>
PS >$to = "guide_feedback@leeholmes.com"
PS >$subject = "Thanks for all of the scripts."
PS >$mailHost = "mail.leeholmes.com"
PS >Send-MailMessage $to $subject $body $mailHost
##
##

param(
 [string[]] $to = $(throw "Please specify the destination mail address"),
 [string] $subject = "<No Subject>",
 [string] $body = $(throw "Please specify the message content"),
 [string] $smtpHost = $(throw "Please specify a mail server."),
 [string] $from = "$($env:UserName)@example.com"
)

Create the mail message
$email = New-Object System.Net.Mail.MailMessage

Populate its fields
foreach($mailTo in $to)
{
 $email.To.Add($mailTo)
}

$email.From = $from
$email.Subject = $subject
$email.Body = $body

Send the mail
$client = New-Object System.Net.Mail.SmtpClient $smtpHost
$client.UseDefaultCredentials = $true
$client.Send($email)

172 | Chapter 9: Internet-Enabled Scripts

9.7 Program: Interact with Internet Protocols
While it is common to work at an abstract level with web sites and web services, an
entirely separate style of Internet-enabled scripting comes from interacting with the
remote computer at a much lower level. This lower level (called the TCP level, for
Transmission Control Protocol) forms the communication foundation of most Inter-
net protocols—such as Telnet, SMTP (sending mail), POP3 (receiving mail), and
HTTP (retrieving web content).

The .NET Framework provides classes that allow you to interact with many of the
Internet protocols directly: the System.Web.Mail.SmtpMail class for SMTP, the
System.Net.WebClient class for HTTP, and a few others. When the .NET Framework
does not support an Internet protocol that you need, though, you can often script the
application protocol directly if you know the details of how it works.

Example 9-5 shows how to receive information about mail waiting in a remote POP3
mailbox, using the Send-TcpRequest script given in Example 9-6.

In Example 9-5, you connect to port 110 of the remote mail server. You then issue
commands to request the status of the mailbox in a form that the mail server under-
stands. The format of this network conversation is specified and required by the
standard POP3 protocol. Example 9-5 uses the Convert-TextObject command, which
is provided in Recipe 5.12, “Program: Convert Text Streams to Objects.”

Example 9-6 supports the core functionality of Example 9-5. It lets you easily work
with plain-text TCP protocols.

Example 9-5. Interacting with a remote POP3 mailbox

Get the user credential
if(-not (Test-Path Variable:\mailCredential))
{
 $mailCredential = Get-Credential
}
$address = $mailCredential.UserName
$password = $mailCredential.GetNetworkCredential().Password

Connect to the remote computer, send the commands, and receive the
output
$pop3Commands = "USER $address","PASS $password","STAT","QUIT"
$output = $pop3Commands | Send-TcpRequest mail.myserver.com 110
$inbox = $output.Split("`n")[3]

Parse the output for the number of messages waiting and total bytes
$status = $inbox |
 Convert-TextObject -PropertyName "Response","Waiting","BytesTotal","Extra"
"{0} messages waiting, totaling {1} bytes." -f $status.Waiting, $status.BytesTotal

9.7 Program: Interact with Internet Protocols | 173

Example 9-6. Send-TcpRequest.ps1

##
Send-TcpRequest.ps1
##
Send a TCP request to a remote computer, and return the response.
If you do not supply input to this script (via either the pipeline, or the
-InputObject parameter,) the script operates in interactive mode.
##
Example:
##
$http = @"
GET / HTTP/1.1
Host:search.msn.com
`n`n
"@
##
$http | Send-TcpRequest search.msn.com 80
##
param(
 [string] $remoteHost = "localhost",
 [int] $port = 80,
 [string] $inputObject,
 [int] $commandDelay = 100
)

[string] $output = ""

Store the input into an array that we can scan over. If there was no input,
then we will be in interactive mode.
$currentInput = $inputObject
if(-not $currentInput)
{
 $SCRIPT:currentInput = @($input)
}
$scriptedMode = [bool] $currentInput

function Main
{
 ## Open the socket, and connect to the computer on the specified port
 if(-not $scriptedMode)
 {
 Write-Host "Connecting to $remoteHost on port $port"
 }

 trap { Write-Error "Could not connect to remote computer: $_"; exit }
 $socket = New-Object System.Net.Sockets.TcpClient($remoteHost, $port)

 if(-not $scriptedMode)
 {
 Write-Host "Connected. Press ^D followed by [ENTER] to exit.`n"
 }

 $stream = $socket.GetStream()
 $writer = New-Object System.IO.StreamWriter($stream)

174 | Chapter 9: Internet-Enabled Scripts

 ## Create a buffer to receive the response
 $buffer = New-Object System.Byte[] 1024
 $encoding = New-Object System.Text.AsciiEncoding

 while($true)
 {
 ## Receive the output that has buffered so far
 $SCRIPT:output += GetOutput

 ## If we're in scripted mode, send the commands,
 ## receive the output, and exit.
 if($scriptedMode)
 {
 foreach($line in $currentInput)
 {
 $writer.WriteLine($line)
 $writer.Flush()
 Start-Sleep -m $commandDelay
 $SCRIPT:output += GetOutput
 }

 break
 }
 ## If we're in interactive mode, write the buffered
 ## output, and respond to input.
 else
 {
 if($output)
 {
 foreach($line in $output.Split("`n"))
 {
 Write-Host $line
 }
 $SCRIPT:output = ""
 }

 ## Read the user's command, quitting if they hit ^D
 $command = Read-Host
 if($command -eq ([char] 4)) { break; }

 ## Otherwise, write their command to the remote host
 $writer.WriteLine($command)
 $writer.Flush()
 }
 }

 ## Close the streams
 $writer.Close()
 $stream.Close()

Example 9-6. Send-TcpRequest.ps1 (continued)

9.7 Program: Interact with Internet Protocols | 175

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 5.12, “Program: Convert Text Streams to Objects”

 ## If we're in scripted mode, return the output
 if($scriptedMode)
 {
 $output
 }
}

Read output from a remote host
function GetOutput
{
 $outputBuffer = ""
 $foundMore = $false

 ## Read all the data available from the stream, writing it to the
 ## output buffer when done.
 do
 {
 ## Allow data to buffer for a bit
 Start-Sleep -m 1000

 ## Read what data is available
 $foundmore = $false
 while($stream.DataAvailable)
 {
 $read = $stream.Read($buffer, 0, 1024)
 $outputBuffer += ($encoding.GetString($buffer, 0, $read))
 $foundmore = $true
 }
 } while($foundmore)

 $outputBuffer
}

. Main

Example 9-6. Send-TcpRequest.ps1 (continued)

176

Chapter 10CHAPTER 10

Code Reuse 11

10.0 Introduction
What surprises many people is how much you can accomplish in PowerShell from
the interactive prompt alone. Since PowerShell makes it so easy to join its powerful
commands together into even more powerful combinations, enthusiasts grow to rel-
ish this brevity. In fact, there is a special place in the heart of most scripting enthusi-
asts set aside entirely for the most compact expressions of power: one-liners.

Despite its interactive efficiency, you obviously don’t want to retype all your brilliant
ideas anew each time you need them. When you want to save or reuse the com-
mands that you’ve written, PowerShell provides many avenues to support you:
scripts, libraries, functions, script blocks, and more.

10.1 Write a Script

Problem
You want to store your commands in a script, so that you can share them or reuse
them later.

Solution
To write a PowerShell script, create a plain-text file with your editor of choice. Add
your PowerShell commands to that script (the same PowerShell commands you use
from the interactive shell) and then save it with a .ps1 extension.

Discussion
One of the most important things to remember about PowerShell is that running
scripts and working at the command line are essentially equivalent operations. If you
see it in a script, you can type it or paste it at the command line. If you typed it on
the command line, you can paste it into a text file and call it a script.

10.1 Write a Script | 177

Once you write your script, PowerShell lets you call it in the same way that you call
other programs and existing tools. Running a script does the same thing as running
all the commands in that script.

PowerShell introduces a few features related to running scripts and
tools that may at first confuse you if you aren’t aware of them. For
more information about how to call scripts and existing tools, see
Recipe 1.1, “Run Programs, Scripts, and Existing Tools.”

The first time you try to run a script in PowerShell, PowerShell provides the error
message:

File c:\tools\myFirstScript.ps1 cannot be loaded because the execution of scri
pts is disabled on this system. Please see "get-help about_signing" for more d
etails.
At line:1 char:12
+ myFirstScript <<<<

Since relatively few computer users write scripts, PowerShell’s default security poli-
cies prevent scripts from running. Once you begin writing scripts, though, you
should configure this policy to something less restrictive. For information on how
to configure your execution policy, see Recipe 16.1, “Enable Scripting Through an
Execution Policy.”

When it comes to the filename of your script, picking a descriptive name is the best
way to guarantee that you will always remember what that script does—or at least
have a good idea. This is an issue that PowerShell tackles elegantly, by naming every
cmdlet in the Verb-Noun pattern: a command that performs an action (verb) on an
item (noun). As an example of the usefulness of this philosophy, consider the names
of typical Windows commands given in Example 10-1:

Example 10-1. The names of some standard Windows commands

PS >dir $env:WINDIR\System32*.exe | Select-Object Name

Name

accwiz.exe
actmovie.exe
ahui.exe
alg.exe
append.exe
arp.exe
asr_fmt.exe
asr_ldm.exe
asr_pfu.exe
at.exe
atmadm.exe
attrib.exe
(...)

178 | Chapter 10: Code Reuse

Compare this to the names of some standard Windows PowerShell cmdlets given in
Example 10-2.

As an additional way to improve discovery, PowerShell takes this even further with
the philosophy (and explicit goal) that “you can manage 80 percent of your system
with less than 50 verbs.” As you learn the standard verbs for a concept (such as Get as
the standard verb of Read, Open, and so on), you can often guess the verb of a com-
mand as the first step in discovering it.

When you name your script (especially if you intend to share it), make every effort to
pick a name that follows these conventions. Appendix D, Standard PowerShell Verbs
provides a list of PowerShell’s standard verbs to help you name your scripts prop-
erly. As evidence of its utility for scripts, consider some of the scripts included in this
book:

PS >dir | select Name

Name

Compare-Property.ps1
Connect-WebService.ps1
Convert-TextObject.ps1
Get-AliasSuggestion.ps1
Get-Answer.ps1
Get-Characteristics.ps1
Get-OwnerReport.ps1
Get-PageUrls.ps1
Invoke-CmdScript.ps1
New-GenericObject.ps1
Select-FilteredObject.ps1
(...)

Example 10-2. The names of some standard Windows PowerShell cmdlets

PS >Get-Command | Select-Object Name

Name

Add-Content
Add-History
Add-Member
Add-PSSnapin
Clear-Content
Clear-Item
Clear-ItemProperty
Clear-Variable
Compare-Object
ConvertFrom-SecureString
Convert-Path
ConvertTo-Html
(...)

10.2 Write a Function | 179

Like the PowerShell cmdlets, the names of these scripts are clear, are easy to under-
stand, and use verbs from PowerShell’s standard verb list.

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 16.1, “Enable Scripting Through an Execution Policy”

• Appendix D, Standard PowerShell Verbs

10.2 Write a Function

Problem
You have commands in your script that you want to call multiple times, or a section
of your script that you consider to be a “helper” for the main purpose of your script.

Solution
Place this common code in a function, and then call that function instead. For exam-
ple, this Celsius conversion code in a script:

param([double] $fahrenheit)

Convert it to Celsius
$celsius = $fahrenheit - 32
$celsius = $celsius / 1.8

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

could be placed in a function (itself in a script):

param([double] $fahrenheit)

Convert Fahrenheit to Celsius
function ConvertFahrenheitToCelsius([double] $fahrenheit)
{
 $celsius = $fahrenheit - 32
 $celsius = $celsius / 1.8
 $celsius
}

$celsius = ConvertFahrenheitToCelsius $fahrenheit

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

Although using a function arguably makes this specific script longer and more diffi-
cult to understand, the technique is extremely valuable (and used) in almost all non-
trivial scripts.

180 | Chapter 10: Code Reuse

Discussion
Once you define a function, any command after that definition can use it. This
means that you must define your function before any part of your script that uses it.
You might find this unwieldy if your script defines many functions, as the function
definitions obscure the main logic portion of your script. If this is the case, you can
put your main logic in a “Main” function, as described in “Writing Scripts, Reusing
Functionality” in Appendix A.

A common question that comes from those accustomed to batch
scripting in cmd.exe is, “What is the PowerShell equivalent of a GOTO?”
In situations where the GOTO is used to call subroutines or other iso-
lated helper parts of the batch file, use a PowerShell function to
accomplish that task. If the GOTO is used as a way to loop over some-
thing, PowerShell’s looping mechanisms are more appropriate.

In PowerShell, calling a function is designed to feel just like calling a cmdlet or a
script. As a user, you should not have to know whether a little helper routine was
written as a cmdlet, script, or function. When you call a function, simply add the
parameters after the function name, with spaces separating each one (as shown in
the solution). This is in contrast to the way that you call functions in many program-
ming languages (such as C#), where you use parentheses after the function name
and commas between each parameter.

Also, notice that the return value from a function is anything that it writes to the out-
put pipeline (such as $celsius in the solution). You can write return $celsius if you
want, but it is unnecessary.

For more information about writing functions, see “Writing Scripts, Reusing Func-
tionality” in Appendix A. For more information about PowerShell’s looping state-
ments, see Recipe 4.4, “Repeat Operations with Loops.”

See Also
• Recipe 4.4, “Repeat Operations with Loops”

• “Writing Scripts, Reusing Functionality” in Appendix A

10.3 Write a Script Block

Problem
You have a section of your script that works nearly the same for all input, aside from
a minor change in logic.

10.3 Write a Script Block | 181

Solution
As shown in Example 10-3, place the minor logic differences in a script block, and
then pass that script block as a parameter to the code that requires it. Use the invoke
operator (&) to execute the script block.

Discussion
Imagine a script that needs to multiply all the elements in a list by two:

function MultiplyInputByTwo
{
 process
 {
 $_ * 2
 }
}

but it also needs to perform a more complex calculation:

function MultiplyInputComplex
{
 process
 {
 ($_ + 2) * 3
 }
}

These two functions are strikingly similar, except for the single line that actually per-
forms the calculation. As we add more calculations, this quickly becomes more evi-
dent. Adding each new seven line function gives us only one unique line of value!

PS >1,2,3 | MultiplyInputByTwo
2
4
6
PS >1,2,3 | MultiplyInputComplex

Example 10-3. A script that applies a script block to each element in the pipeline

##
Map-Object.ps1
##
Apply the given mapping command to each element of the input
##
Example:
1,2,3 | Map-Object { $_ * 2 }
##
param([ScriptBlock] $mapCommand)

process
{
 & $mapCommand
}

182 | Chapter 10: Code Reuse

9
12
15

If we instead use a script block to hold this “unknown” calculation, we don’t need to
keep on adding new functions:

PS >1,2,3 | Map-Object { $_ * 2 }
2
4
6
PS >1,2,3 | Map-Object { ($_ + 2) * 3 }
9
12
15
PS >1,2,3 | Map-Object { ($_ + 3) * $_ }
4
10
18

In fact, the functionality provided by Map-Object is so helpful that it is a standard Pow-
erShell cmdlet—called Foreach-Object. For more information about script blocks, see
“Writing Scripts, Reusing Functionality” in Appendix A. For more information about
running scripts, see Recipe 1.1, “Run Programs, Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• “Writing Scripts, Reusing Functionality” in Appendix A

10.4 Return Data from a Script, Function, or Script
Block

Problem
You want your script or function to return data to whatever called it.

Solution
To return data from a script or function, write that data to the output pipeline:

Get-Tomorrow.ps1
Get the date that represents tomorrow

function GetDate
{
 Get-Date
}

$tomorrow = (GetDate).AddDays(1)
$tomorrow

10.4 Return Data from a Script, Function, or Script Block | 183

Discussion
In PowerShell, any data that your function or script generates gets sent to the output
pipeline, unless something captures that output. The GetDate function generates data
(a date) and does not capture it, so that becomes the output of the function. The por-
tion of the script that calls the GetDate function captures that output and then
manipulates it.

Finally, the script writes the $tomorrow variable to the pipeline without capturing it,
so that becomes the return value of the script itself.

Some .NET methods—such as the System.Collections.ArrayList class
produce output, even though you may not expect them to. To prevent
them from sending data to the output pipeline, either capture the data
or cast it to [void]:

PS >$collection = New-Object System.Collections.ArrayList

PS >$collection.Add("Hello")

0

PS >[void] $collection.Add("Hello")

Even with this “pipeline output becomes the return value” philosophy, PowerShell
continues to support the traditional return keyword as a way to return from a func-
tion or script. If you specify anything after the keyword (such as return "Hello"),
PowerShell treats that as a "Hello" statement followed by a return statement.

If you want to make your intention clear to other readers of your
script, you can use the Write-Output cmdlet to explicitly send data
down the pipeline. Both produce the same result, so this is only a mat-
ter of preference.

If you write a collection (such as an array or ArrayList) to the output pipeline, Power-
Shell in fact writes each element of that collection to the pipeline. To keep the collec-
tion intact as it travels down the pipeline, prefix it with a comma when you return it.
This returns a collection (that will be unraveled) with one element: the collection you
wanted to keep intact.

function WritesObjects
{
 $arrayList = New-Object System.Collections.ArrayList
 [void] $arrayList.Add("Hello")
 [void] $arrayList.Add("World")

 $arrayList
}

function WritesArrayList

184 | Chapter 10: Code Reuse

{
 $arrayList = New-Object System.Collections.ArrayList
 [void] $arrayList.Add("Hello")
 [void] $arrayList.Add("World")

 ,$arrayList
}

$objectOutput = WritesObjects

The following command would generate an error
$objectOutput.Add("Extra")

$arrayListOutput = WritesArrayList
$arrayListOutput.Add("Extra")

Although relatively uncommon in PowerShell’s world of fully structured data, you
may sometimes want to use an exit code to indicate the success or failure of your
script. For this, PowerShell offers the exit keyword.

For more information about the return and exit statements, see “Writing Scripts,
Reusing Functionality” in Appendix A and Recipe 1.10, “Determine the Status of the
Last Command.

See Also
• Recipe 1.10, “Determine the Status of the Last Command”

• “Writing Scripts, Reusing Functionality” in Appendix A

10.5 Place Common Functions in a Library

Problem
You’ve developed a useful set of functions and want to share them between multiple
scripts.

Solution
First, place these common function definitions by themselves in a script, with a name
that starts with Library. While the Library prefix is not required, it is a useful nam-
ing convention. Example 10-4 demonstrates this approach.

Example 10-4. A library of temperature functions

LibraryTemperature.ps1
Functions that manipulate and convert temperatures

Convert Fahrenheit to Celsius
function ConvertFahrenheitToCelsius([double] $fahrenheit)

10.6 Access Arguments of a Script, Function, or Script Block | 185

Next, dot-source that library from any scripts that need to use those functions, as
shown by Example 10-5.

Discussion
Although mostly used for libraries, you can dot-source any script or function. When
you dot-source a script or function, PowerShell acts as though the calling script itself
had included the commands from that script or function.

For more information about dot-sourcing, see “Writing Scripts, Reusing Functional-
ity” in Appendix A.

See Also
• “Writing Scripts, Reusing Functionality” in Appendix A

10.6 Access Arguments of a Script, Function, or Script
Block

Problem
You want to access the arguments provided to a script, function, or script block.

Solution
To access arguments by name, use a param statement:

param($firstNamedArgument, [int] $secondNamedArgument = 0)

"First named argument is: $firstNamedArgument"
"Second named argument is: $secondNamedArgument"

{
 $celsius = $fahrenheit - 32
 $celsius = $celsius / 1.8
 $celsius
}

Example 10-5. A script that uses a library

param([double] $fahrenheit)

$scriptDirectory = Split-Path $myInvocation.MyCommand.Path
. (Join-Path $scriptDirectory LibraryTemperature.ps1)

$celsius = ConvertFahrenheitToCelsius $fahrenheit

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

Example 10-4. A library of temperature functions (continued)

186 | Chapter 10: Code Reuse

To access unnamed arguments by position, use the $args array:

"First positional argument is: " + $args[0]
"Second positional argument is: " + $args[1]

You can use these techniques in exactly the same way with scripts, functions, and
script blocks, as illustrated by Example 10-6.

Example 10-6 produces the following output:

PS >Get-Arguments First 2
First named argument is: First
Second named argument is: 2
First positional function argument is: One
Second positional function argument is: Two
First named scriptblock argument is: One
Second named scriptblock argument is: 4

Example 10-6. Working with arguments in scripts, functions, and script blocks

##
Get-Arguments.ps1
##
Use command-line arguments
##
param($firstNamedArgument, [int] $secondNamedArgument = 0)

Display the arguments by name
"First named argument is: $firstNamedArgument"
"Second named argument is: $secondNamedArgument"

function GetArgumentsFunction
{
We could use a param statement here, as well
param($firstNamedArgument, [int] $secondNamedArgument = 0)

Display the arguments by position
"First positional function argument is: " + $args[0]
"Second positional function argument is: " + $args[1]
}

GetArgumentsFunction One Two

$scriptBlock =
{
 param($firstNamedArgument, [int] $secondNamedArgument = 0)

 ## We could use $args here, as well
 "First named scriptblock argument is: $firstNamedArgument"
 "Second named scriptblock argument is: $secondNamedArgument"
}

& $scriptBlock -First One -Second 4.5

10.6 Access Arguments of a Script, Function, or Script Block | 187

Discussion
Although PowerShell supports both the param keyword and the $args array, you will
most commonly want to use the param keyword to define and access script, function,
and script block parameters.

In most languages, the most common reason to access parameters
through an $args-style array is to determine the name of the cur-
rently running script. For information about how to do this in Power-
Shell, see Recipe 14.2, “Access Information About Your Command’s
Invocation.”

When you use the param keyword to define your parameters, PowerShell provides
your script or function with many useful features that allow users to work with your
script much like they work with cmdlets:

• Users need only to specify enough of the parameter name to disambiguate it
from other parameters.

• Users can understand the meaning of your parameters much more clearly.

• You can specify the type of your parameters, which PowerShell uses to convert
input if required.

• You can specify default values for your parameters.

The $args array is sometimes helpful, however, as a way to deal with all arguments at
once. For example:

function Reverse
{
 $argsEnd = $args.Length - 1
 $args[$argsEnd..0]
}

produces

PS >Reverse 1 2 3 4
4
3
2
1

For more information about the param statement, see “Writing Scripts, Reusing
Functionality” in Appendix A. For more information about running scripts, see Rec-
ipe 1.1, “Run Programs, Scripts, and Existing Tools.

See Also
• Recipe 14.2, “Access Information About Your Command’s Invocation”

• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• “Writing Scripts, Reusing Functionality” in Appendix A

188 | Chapter 10: Code Reuse

10.7 Access Pipeline Input

Problem
You want to interact with input that a user sends to your function, script, or script
block via the pipeline.

Solution
To access pipeline input, use the $input variable as shown by Example 10-7.

which produces the following (or similar) output when run against your Windows
system directory:

PS >dir $env:WINDIR | InputCounter
295

Discussion
In your scripts, functions, and script blocks, the $input variable represents an
enumerator (as opposed to a simple array) for the pipeline input the user provides.
An enumerator lets you use a foreach statement to efficiently scan over the elements
of the input (as shown in Example 10-7) but does not let you directly access specific
items (such as the fifth element in the input, for example).

An enumerator only lets you to scan forward through its contents.
Once you access an element, PowerShell automatically moves on to
the next one. If you need to access an item that you’ve already
accessed before, you must call $input.Reset() to scan through the list
again from the beginning, or store the input in an array.

If you need to access specific elements in the input (or access items multiple times),
the best approach is to store the input in an array. This prevents your script from

Example 10-7. Accessing pipeline input

function InputCounter
{
 $count = 0

 ## Go through each element in the pipeline, and add up
 ## how many elements there were.
 foreach($element in $input)
 {
 $count++
 }

 $count
}

10.8 Write Pipeline-Oriented Scripts with Cmdlet Keywords | 189

taking advantage of the $input enumerator's streaming behavior, but is sometimes
the only alternative. To store the input in an array, use PowerShell’s list evaluation
syntax (@()) to force PowerShell to interpret it as an array.

function ReverseInput
{
 $inputArray = @($input)
 $inputEnd = $inputArray.Count - 1

 $inputArray[$inputEnd..0]
}

which produces

PS >1,2,3,4 | ReverseInput
4
3
2
1

If dealing with pipeline input plays a major role in your script, function, or script
block, PowerShell provides an alternative means of dealing with pipeline input that
may make your script easier to write and understand. For more information, see
the following section Recipe 10.8, “Write Pipeline-Oriented Scripts with Cmdlet
Keywords.”

See Also
• Recipe 10.8, “Write Pipeline-Oriented Scripts with Cmdlet Keywords”

10.8 Write Pipeline-Oriented Scripts with Cmdlet
Keywords

Problem
Your script, function, or script block primarily takes input from the pipeline, and
you want to write it in a way that makes this intention both easy to implement and
easy to read.

Solution
To cleanly separate your script into regions that deal with the initialization, per-
record processing, and cleanup portions, use the begin, process, and end keywords,
respectively. For example, a pipeline-oriented conversion of the solution in the sec-
tion Recipe 10.7, “Access Pipeline Input,” looks like Example 10-8.

190 | Chapter 10: Code Reuse

This produces the following output:

PS >$debugPreference = "Continue"
PS >dir | InputCounter
DEBUG: Processing element Compare-Property.ps1
DEBUG: Processing element Connect-WebService.ps1
DEBUG: Processing element Convert-TextObject.ps1
DEBUG: Processing element ConvertFrom-FahrenheitWithFunction.ps1
DEBUG: Processing element ConvertFrom-FahrenheitWithLibrary.ps1
DEBUG: Processing element ConvertFrom-FahrenheitWithoutFunction.ps1
DEBUG: Processing element Get-AliasSuggestion.ps1
(...)
DEBUG: Processing element Select-FilteredObject.ps1
DEBUG: Processing element Set-ConsoleProperties.ps1
20

Discussion
If your script, function, or script block deals primarily with input from the pipeline,
the begin, process, and end keywords let you express your solution most clearly.
Readers of your script (including you!) can easily see which portions of your script
deal with initialization, per-record processing, and cleanup. In addition, separating
your code into these blocks lets your script to consume elements from the pipeline as
soon as the previous script produces them.

Take, for example, the Get-InputWithForeach and Get-InputWithKeyword functions
shown in Example 10-9. The first visits each element in the pipeline with a foreach
statement over its input, while the second uses the begin, process, and end keywords.

Example 10-8. A pipeline-oriented script that uses cmdlet keywords

function InputCounter
{
 begin
 {
 $count = 0
 }

 ## Go through each element in the pipeline, and add up
 ## how many elements there were.
 process
 {
 Write-Debug "Processing element $_"
 $count++
 }

 end
 {
 $count
 }
}

10.8 Write Pipeline-Oriented Scripts with Cmdlet Keywords | 191

Both of these functions act the same when run individually, but the difference
becomes clear when we combine them with other scripts or functions that take pipe-
line input. When a script uses the $input variable, it must wait until the previous
script finishes producing output before it can start. If the previous script takes a long
time to produce all its records (for example, a large directory listing), then your user
must wait until the entire directory listing completes to see any results, rather than
seeing results for each item as the script generates it.

Example 10-9. Two functions that take different approaches to processing pipeline input

Process each element in the pipeline, using a
foreach statement to visit each element in $input
function Get-InputWithForeach($identifier)
{
 Write-Host "Beginning InputWithForeach (ID: $identifier)"

 foreach($element in $input)
 {
 Write-Host "Processing element $element (ID: $identifier)"
 $element
 }

 Write-Host "Ending InputWithForeach (ID: $identifier)"
}

Process each element in the pipeline, using the
cmdlet-style keywords to visit each element in $input
function Get-InputWithKeyword($identifier)
{
 begin
 {
 Write-Host "Beginning InputWithKeyword (ID: $identifier)"
 }

 process
 {
 Write-Host "Processing element $_ (ID: $identifier)"
 $_
 }

 end
 {
 Write-Host "Ending InputWithKeyword (ID: $identifier)"
 }
}

192 | Chapter 10: Code Reuse

If a script, function, or script block uses the cmdlet-style keywords, it
must place all its code (aside from comments or its param statement if
it uses one) inside one of the three blocks. If your code needs to define
and initialize variables or define functions, place them in the begin
block. Unlike most blocks of code contained within curly braces, the
code in the begin, process, and end blocks has access to variables and
functions defined within the blocks before it.

When we chain together two scripts that process their input with the begin, process,
and end keywords, the second script gets to process input as soon as the first script
produces it.

PS >1,2,3 | Get-InputWithKeyword 1 | Get-InputWithKeyword 2
Beginning InputWithKeyword (ID: 1)
Beginning InputWithKeyword (ID: 2)
Processing element 1 (ID: 1)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 1)
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 1)
Processing element 3 (ID: 2)
3
Ending InputWithKeyword (ID: 1)
Ending InputWithKeyword (ID: 2)

When we chain together two scripts that process their input with the $input vari-
able, the second script can’t start until the first completes.

PS >1,2,3 | Get-InputWithForeach 1 | Get-InputWithForeach 2
Beginning InputWithForeach (ID: 1)
Processing element 1 (ID: 1)
Processing element 2 (ID: 1)
Processing element 3 (ID: 1)
Ending InputWithForeach (ID: 1)
Beginning InputWithForeach (ID: 2)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 2)
3
Ending InputWithForeach (ID: 2)

When the first script uses the cmdlet-style keywords, and the second scripts uses the
$input variable, the second script can’t start until the first completes.

PS >1,2,3 | Get-InputWithKeyword 1 | Get-InputWithForeach 2
Beginning InputWithKeyword (ID: 1)
Processing element 1 (ID: 1)
Processing element 2 (ID: 1)
Processing element 3 (ID: 1)

10.9 Write a Pipeline-Oriented Function | 193

Ending InputWithKeyword (ID: 1)
Beginning InputWithForeach (ID: 2)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 2)
3
Ending InputWithForeach (ID: 2)

When the first script uses the $input variable and the second script uses the cmdlet-
style keywords, the second script gets to process input as soon as the first script pro-
duces it.

PS >1,2,3 | Get-InputWithForeach 1 | Get-InputWithKeyword 2
Beginning InputWithKeyword (ID: 2)
Beginning InputWithForeach (ID: 1)
Processing element 1 (ID: 1)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 1)
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 1)
Processing element 3 (ID: 2)
3
Ending InputWithForeach (ID: 1)
Ending InputWithKeyword (ID: 2)

For more information about dealing with pipeline input, see “Writing Scripts,
Reusing Functionality” in Appendix A.

See Also
• Recipe 10.7, “Access Pipeline Input”

• “Writing Scripts, Reusing Functionality” in Appendix A

10.9 Write a Pipeline-Oriented Function

Problem
Your function primarily takes its input from the pipeline, and you want it to perform
the same steps for each element of that input.

Solution
To write a pipeline-oriented function, define your function using the filter key-
word, rather than the function keyword. PowerShell makes the current pipeline
object available as the $_ variable.

194 | Chapter 10: Code Reuse

filter Get-PropertyValue($property)
{
 $_.$property
}

Discussion
A filter is the equivalent of a function that uses the cmdlet-style keywords and has all
its code inside the process section.

The solution demonstrates an extremely useful filter: one that returns the value of a
property for each item in a pipeline:

PS >Get-Process | Get-PropertyValue Name
audiodg
avgamsvr
avgemc
avgrssvc
avgrssvc
avgupsvc
(...)

For more information about the cmdlet-style keywords, see Recipe 10.8, “Write
Pipeline-Oriented Scripts with Cmdlet Keywords.”

See Also
• Recipe 10.8, “Write Pipeline-Oriented Scripts with Cmdlet Keywords”

195

Chapter 11 CHAPTER 11

Lists, Arrays, and Hashtables12

11.0 Introduction
Most scripts deal with more than one thing—lists of servers, lists of files, lookup
codes, and more. To enable this, PowerShell supports many features to help you
through both its language features and utility cmdlets.

PowerShell makes working with arrays and lists much like working with other data
types: you can easily create an array or list and then add or remove elements from it.
You can just as easily sort it, search it, or combine it with another array. When you
want to store a mapping between one piece of data and another, a hashtable solves
that need perfectly.

11.1 Create an Array or List of Items

Problem
You want to create an array or list of items.

Solution
To create an array that holds a given set of items, separate those items with commas:

PS >$myArray = 1,2,"Hello World"
PS >$myArray
1
2
Hello World

To create an array of a specific size, use the New-Object cmdlet:

PS >$myArray = New-Object string[] 10
PS >$myArray[5] = "Hello"
PS >$myArray[5]
Hello

196 | Chapter 11: Lists, Arrays, and Hashtables

To store the output of a command that generates a list, use variable assignment:

PS >$myArray = Get-Process
PS >$myArray

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 274 6 1316 3908 33 3164 alg
 983 7 3636 7472 30 688 csrss
 69 4 924 3332 30 0.69 2232 ctfmon
 180 5 2220 6116 37 2816 dllhost
(...)

To create an array that you plan to modify frequently, use an ArrayList, as shown by
Example 11-1.

Discussion
Aside from the primitive data types (such as strings, integers, and decimals), lists of
items are a common concept in the scripts and commands that you write. Most com-
mands generate lists of data: the Get-Content cmdlet generates a list of strings in a
file, the Get-Process cmdlet generates a list of processes running on the system, and
the Get-Command cmdlet generates a list of commands, just to name a few.

The solution shows how to store the output of a command that gener-
ates a list. If a command outputs only one item (such as a single line
from a file, a single process, or a single command), then that output is
no longer a list. If you want to treat that output as a list even when it is
not, use the list evaluation syntax (@()) to force PowerShell to inter-
pret it as an array:

$myArray = @(Get-Process Explorer)

For more information on lists and arrays in PowerShell, see “Arrays and Lists” in
Appendix A.

Example 11-1. Using an ArrayList to manage a dynamic collection of items

PS >$myArray = New-Object System.Collections.ArrayList
PS >[void] $myArray.Add("Hello")
PS >[void] $myArray.AddRange(("World","How","Are","You"))
PS >$myArray
Hello
World
How
Are
You
PS >$myArray.RemoveAt(1)
PS >$myArray
Hello
How
Are
You

11.2 Create a Jagged or Multidimensional Array | 197

See Also
• “Arrays and Lists” in Appendix A

11.2 Create a Jagged or Multidimensional Array

Problem
You want to create an array of arrays, or an array of multiple dimensions.

Solution
To create a jagged multidimensional array (an array of arrays), use the @() array
syntax:

PS >$jagged = @(
>> (1,2,3,4),
>> (5,6,7,8)
>>)
>>
PS >$jagged[0][1]
>>2
PS >$jagged[1][3]
>>8

To create a (nonjagged) multidimensional array, use the New-Object cmdlet:

PS >$multidimensional = New-Object "int32[,]" 2,4
PS >$multidimensional[0,1] = 2
PS >$multidimensional[1,3] = 8
PS >
PS >$multidimensional[0,1]
>>2
PS >$multidimensional[1,3]
>>8

Discussion
Jagged and multidimensional arrays are useful for holding lists of lists/arrays of arrays.
Jagged arrays are much easier to work with (and use less memory), while nonjagged
multidimensional arrays are sometimes useful for dealing with large grids of data.

Since a jagged array is an array of arrays, creating an item in a jagged array follows
the same rules as creating an item in a regular array. If any of the arrays are single-
element arrays, use the unary comma operator. For example, to create a jagged array
with one nested array of one element:

PS >$oneByOneJagged = @(
>> ,(,1)
>>
PS >$oneByOneJagged[0][0]

198 | Chapter 11: Lists, Arrays, and Hashtables

For more information on lists and arrays in PowerShell, see “Arrays and Lists” in
Appendix A.

See Also
• “Arrays and Lists” in Appendix A

11.3 Access Elements of an Array

Problem
You want to access the elements of an array.

Solution
To access a specific element of an array, use PowerShell’s array access mechanism:

PS >$myArray = 1,2,"Hello World"
PS >$myArray[1]
2

To access a range of array elements, use array ranges and array slicing:

PS >$myArray = 1,2,"Hello World"
PS >$myArray[1..2 + 0]
2
Hello World
1

Discussion
PowerShell’s array access mechanisms provide a convenient way to access either spe-
cific elements of an array or more complex combinations of elements in that array. In
PowerShell (as with most other scripting and programming languages), the item at
index 0 represents the first item in the array.

Although working with the elements of an array by their numerical index is helpful,
you may find it useful to refer to them by something else—such as their name, or even
a custom label. This type of array is known as an associative array (or hashtable). For
more information about working with hashtables and associative arrays, see Recipe
11.12, “Create a Hashtable or Associative Array.”

For more information on lists and arrays in PowerShell (including the array ranges
and slicing syntax), see “Arrays and Lists” in Appendix A.

See Also
• Recipe 11.12, “Create a Hashtable or Associative Array

• “Arrays and Lists” in Appendix A

11.4 Visit Each Element of an Array | 199

11.4 Visit Each Element of an Array

Problem
You want to work with each element of an array.

Solution
To access each item in an array one-by-one, use the Foreach-Object cmdlet:

PS >$myArray = 1,2,3
PS >$sum = 0
PS >$myArray | Foreach-Object { $sum += $_ }
PS >$sum
6

To access each item in an array in a more scriptlike fashion, use the foreach script-
ing keyword:

PS >$myArray = 1,2,3
PS >$sum = 0
PS >foreach($element in $myArray) { $sum += $element }
PS >$sum
6

To access items in an array by position, use a for loop:

PS >$myArray = 1,2,3
PS >$sum = 0
PS >for($counter = 0; $counter -lt $myArray.Count; $counter++) {
>> $sum += $myArray[$counter]
>> }
>>
PS >$sum
6

Discussion
PowerShell provides three main alternatives to working with elements in an array.
The Foreach-Object cmdlet and foreach scripting keyword techniques visit the items
in an array one element at a time, while the for loop (and related looping con-
structs) lets you work with the items in an array in a less structured way.

For more information about the Foreach-Object cmdlet, see Recipe 2.4, “Work with
Each Item in a List or Command Output.”

For more information about the foreach scripting keyword, the for keyword, and
other looping constructs, see Recipe 4.4, “Repeat Operations with Loops.”

See Also
• Recipe 2.4, “Work with Each Item in a List or Command Output”

• Recipe 4.4, “Repeat Operations with Loops”

200 | Chapter 11: Lists, Arrays, and Hashtables

11.5 Sort an Array or List of Items

Problem
You want to sort the elements of an array or list.

Solution
To sort a list of items, use the Sort-Object cmdlet:

PS >Get-ChildItem | Sort-Object -Descending Length | Select Name,Length

Name Length
---- ------
Convert-TextObject.ps1 6868
Connect-WebService.ps1 4178
Select-FilteredObject.ps1 3252
Get-PageUrls.ps1 2878
Get-Characteristics.ps1 2515
Get-Answer.ps1 1890
New-GenericObject.ps1 1490
Invoke-CmdScript.ps1 1313

Discussion
The Sort-Object cmdlet provides a convenient way for you to sort items by a prop-
erty that you specify. If you don’t specify a property, the Sort-Object cmdlet follows
the sorting rules of those items if they define any.

In addition to sorting by a property in ascending or descending order, the Sort-
Object cmdlet’s –Unique switch also allows you to remove duplicates from the sorted
collection.

For more information about the Sort-Object cmdlet, type Get-Help Sort-Object.

11.6 Determine Whether an Array Contains an Item

Problem
You want to determine whether an array or list contains a specific item.

Solution
To determine whether a list contains a specific item, use the –contains operator:

PS >"Hello","World" -contains "Hello"
True
PS >"Hello","World" -contains "There"
False

11.7 Combine Two Arrays | 201

Discussion
The –contains operator is a useful way to quickly determine whether a list contains a
specific element. To search a list for items that instead match a pattern, use the –match
or –like operators.

For more information about the –contains, -match, and –like operators, see “Com-
parison Operators” in Appendix A.

See Also
• “Comparison Operators” in Appendix A

11.7 Combine Two Arrays

Problem
You have two arrays and want to combine them into one.

Solution
To combine PowerShell arrays, use the addition operator (+):

PS >$firstArray = "Element 1","Element 2","Element 3","Element 4"
PS >$secondArray = 1,2,3,4
PS >
PS >$result = $firstArray + $secondArray
PS >$result
Element 1
Element 2
Element 3
Element 4
1
2
3
4

Discussion
One common reason to combine two arrays is when you want to add data to the end
of one of the arrays. For example:

PS >$array = 1,2
PS >$array = $array + 3,4
PS >$array
1
2
3
4

202 | Chapter 11: Lists, Arrays, and Hashtables

You can write this more clearly as:

PS >$array = 1,2
PS >$array += 3,4
PS >$array
1
2
3
4

When written in the second form, however, you might think that PowerShell simply
adds the items to the end of the array while keeping the array itself intact. This is not
true, since arrays in PowerShell (like most other languages) stay the same length once
you create them. To combine two arrays, PowerShell creates a new array large
enough to hold the contents of both arrays and then copies both arrays into the des-
tination array.

If you plan to add and remove data from an array frequently, the System.
Collections.ArrayList class provides a more dynamic alternative. For more informa-
tion about using the ArrayList class, see Recipe 11.11, “Use the ArrayList Class for
Advanced Array Tasks.”

See Also
• Recipe 11.11, “Use the ArrayList Class for Advanced Array Tasks”

11.8 Find Items in an Array That Match a Value

Problem
You have an array and want to find all elements that match a given item or term—
either exactly, by pattern, or by regular expression.

Solution
To find all elements that match an item, use the –eq, -like, and –match comparison
operators:

PS >$array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS >$array -eq "Item 1"
Item 1
Item 1
PS >$array -like "*1*"
Item 1
Item 1
Item 12
PS >$array -match "Item .."
Item 12

11.9 Remove Elements from an Array | 203

Discussion
The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. The –eq operator returns all elements that are equal to
your term, the –like operator returns all elements that match the wildcard given in
your pattern, and the –match operator returns all elements that match the regular
expression given in your pattern.

For more information about the –eq, -like, and –match operators, see “Comparison
Operators” in Appendix A.

See Also
• “Comparison Operators” in Appendix A

11.9 Remove Elements from an Array

Problem
You want to remove all elements from an array that match a given item or term—
either exactly, by pattern, or by regular expression.

Solution
To remove all elements from an array that match a pattern, use the –ne, -notlike,
and –notmatch comparison operators as shown in Example 11-2.

To actually remove the items from the array, store the results back in the array:

PS >$array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS >$array = $array -ne "Item 1"
PS >$array
Item 2
Item 3
Item 12

Example 11-2. Removing elements from an array using the –ne, -notlike, and –notmatch operators

PS >$array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS >$array -ne "Item 1"
Item 2
Item 3
Item 12
PS >$array -notlike "*1*"
Item 2
Item 3
PS >$array -notmatch "Item .."
Item 1
Item 2
Item 3
Item 1

204 | Chapter 11: Lists, Arrays, and Hashtables

Discussion
The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. Their opposites—the –ne, -notlike, and –notmatch oper-
ators—return all elements that do not match that given term.

To remove all elements from an array that match a given pattern, then, you can save
all elements that do not match that pattern.

For more information about the –ne, -notlike, and –notmatch operators, see “Com-
parison Operators” in Appendix A.

11.10 Find Items in an Array Greater or Less Than a
Value

Problem
You have an array and want to find all elements greater or less than a given item or
value.

Solution
To find all elements greater or less than a given value, use the –gt, -ge, -lt, and –le
comparison operators:

PS >$array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS >$array -ge "Item 3"
Item 3
PS >$array -lt "Item 3"
Item 1
Item 2
Item 1
Item 12

Discussion
The -gt, -ge, -lt, and -le operators are useful ways to find elements in a collection
that are greater or less than a given value. Like all other PowerShell comparison oper-
ators, these use the comparison rules of the items in the collection. Since the array in
the solution is an array of strings, this result can easily surprise you:

PS >$array -lt "Item 2"
Item 1
Item 1
Item 12

The reason for this becomes clear when you look at the sorted array—"Item 12"
comes before "Item 2" alphabetically, which is the way that PowerShell compares
arrays of strings.

11.11 Use the ArrayList Class for Advanced Array Tasks | 205

PS >$array | Sort-Object
Item 1
Item 1
Item 12
Item 2
Item 3

For more information about the -gt, -ge, -lt, and -le operators, see “Comparison
Operators” in Appendix A.

See Also
• “Comparison Operators” in Appendix A

11.11 Use the ArrayList Class for Advanced Array Tasks

Problem
You have an array that you want to frequently add elements to, remove elements
from, search, and modify.

Solution
To work with an array frequently after you define it, use the System.Collections.
ArrayList class:

PS >$myArray = New-Object System.Collections.ArrayList
PS >[void] $myArray.Add("Hello")
PS >[void] $myArray.AddRange(("World","How","Are","You"))
PS >$myArray
Hello
World
How
Are
You
PS >$myArray.RemoveAt(1)
PS >$myArray
Hello
How
Are
You

Discussion
Like most other languages, arrays in PowerShell stay the same length once you cre-
ate them. PowerShell allows you to add items, remove items, and search for items in
an array, but these operations may be time consuming when you are dealing with
large amounts of data. For example, to combine two arrays, PowerShell creates a
new array large enough to hold the contents of both arrays and then copies both
arrays into the destination array.

206 | Chapter 11: Lists, Arrays, and Hashtables

In comparison, the ArrayList class is designed to let you easily add, remove, and
search for items in a collection.

PowerShell passes along any data that your script generates, unless
you capture it or cast it to [void]. Since it is designed primarily to be
used from programming languages, the System.Collections.ArrayList
class produces output, even though you may not expect it to. To pre-
vent it from sending data to the output pipeline, either capture the
data or cast it to [void]:

PS >$collection = New-Object System.Collections.ArrayList

PS >$collection.Add("Hello")

0

PS >[void] $collection.Add("World")

If you plan to add and remove data to and from an array frequently, the System.
Collections.ArrayList class provides a more dynamic alternative.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

11.12 Create a Hashtable or Associative Array

Problem
You have a collection of items that you want to access through a label that you
provide.

Solution
To define a mapping between labels and items, use a hashtable (associative array):

PS >$myHashtable = @{}
PS >
PS >$myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3 }
PS >$myHashtable["New Item"] = 5
PS >
PS >$myHashTable

Name Value
---- -----
Key 2 {1, 2, 3}
New Item 5
Key1 Value1

11.13 Sort a Hashtable by Key or Value | 207

Discussion
Hashtables are much like arrays that allow you to access items by whatever label you
want—not just through their index in the array. Because of that freedom, they form
the keystone of a huge number of scripting techniques. Since they allow you to map
names to values, they form the natural basis for lookup tables such as ZIP codes and
area codes. Since they allow you to map names to fully featured objects and script
blocks, they can often take the place of custom objects. Since you can map rich
objects to other rich objects, they can even form the basis of more advanced data
structures such as caches and object graphs.

This label and value mapping also proves helpful in interacting with cmdlets that
support advanced configuration parameters, such as the calculated property parame-
ters available on the Format-Table and Select-Object cmdlets.

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” in Appendix A.

See Also
• “Hashtables (Associative Arrays)” in Appendix A

11.13 Sort a Hashtable by Key or Value

Problem
You have a hashtable of keys and values, and want to get the list of values that result
from sorting the keys in order.

Solution
To sort a hashtable, use the GetEnumerator() method on the hashtable to gain access
to its individual elements. Then use the Sort-Object cmdlet to sort by Name or Value.

foreach($item in $myHashtable.GetEnumerator() | Sort Name)
{
 $item.Value
}

Discussion
Since the primary focus of a hashtable is to simply map keys to values, you should
not depend on it to retain any ordering whatsoever—such as the order you added the
items, the sorted order of the keys, or the sorted order of the values.

This becomes clear in Example 11-3.

208 | Chapter 11: Lists, Arrays, and Hashtables

However, the hashtable object supports a GetEnumerator() method that lets you deal
with the individual hashtable entries—all of which have a Name and Value property.
Once you have those, we can sort by them as easily as we can sort any other Power-
Shell data. Example 11-4 demonstrates this technique.

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” in Appendix A.

See Also
• “Hashtables (Associative Arrays)” in Appendix A

Example 11-3. A demonstration of hashtable items not retaining their order

PS >$myHashtable = @{}
PS >$myHashtable["Hello"] = 3
PS >$myHashtable["Ali"] = 2
PS >$myHashtable["Alien"] = 4
PS >$myHashtable["Duck"] = 1
PS >$myHashtable["Hectic"] = 11
PS >$myHashtable

Name Value
---- -----
Hectic 11
Duck 1
Alien 4
Hello 3
Ali 2

Example 11-4. Sorting a hashtable by name and value

PS >$myHashtable.GetEnumerator() | Sort Name

Name Value
---- -----
Ali 2
Alien 4
Duck 1
Hectic 11
Hello 3

PS >$myHashtable.GetEnumerator() | Sort Value

Name Value
---- -----
Duck 1
Ali 2
Hello 3
Alien 4
Hectic 11

209

Chapter 12 CHAPTER 12

User Interaction13

12.0 Introduction
While most scripts are designed to run automatically, you will frequently find it use-
ful to have your scripts interact with the user.

The best way to get input from your user is through the arguments
and parameters to your script or function. This lets your users to run
your script without having to be there as it runs!

If your script greatly benefits from (or requires) an interactive experience, Power-
Shell offers a range of possibilities. This might be simply waiting for a keypress,
prompting for input, or displaying a richer choice-based prompt.

User input isn’t the only aspect of interaction though. In addition to its input facili-
ties, PowerShell supports output as well—from displaying simple text strings to
much more detailed progress reporting and interaction with UI frameworks.

12.1 Read a Line of User Input

Problem
You want to use input from the user in your script.

Solution
To obtain user input, use the Read-Host cmdlet:

PS >$directory = Read-Host "Enter a directory name"
Enter a directory name: C:\MyDirectory
PS >$directory
C:\MyDirectory

210 | Chapter 12: User Interaction

Discussion
The Read-Host cmdlet reads a single line of input from the user. If the input contains
sensitive data, the cmdlet supports an –AsSecureString parameter to read this input
as a SecureString.

If the user input represents a date, time, or number, be aware that most cultures rep-
resent these data types differently. For more information about writing culturally
aware scripts, see Recipe 12.6, “Write Culture-Aware Scripts.”

For more information about the Read-Host cmdlet, type Get-Help Read-Host.

See Also
• Recipe 12.6, “Write Culture-Aware Scripts”

12.2 Read a Key of User Input

Problem
You want your script to get a single keypress from the user.

Solution
For most purposes, use the [Console]::ReadKey() method to read a key:

PS >$key = [Console]::ReadKey($true)
PS >$key

 KeyChar Key Modifiers
 ------- --- ---------
 h H Alt

For highly interactive use (for example, when you care about key down and key up),
use:

PS >$key = $host.UI.RawUI.ReadKey("NoEcho,IncludeKeyDown")
PS >$key

 VirtualKeyCode Character ControlKeyState KeyDown
 -------------- --------- --------------- -------
 16 ...ssed, NumLockOn True

PS >$key.ControlKeyState
ShiftPressed, NumLockOn

12.3 Program: Display a Menu to the User | 211

Discussion
For most purposes, the [Console]::ReadKey() is the best way to get a keystroke from
a user, as it accepts simple keypresses—as well as more complex keypresses that
might include the Ctrl, Alt, and Shift keys.

The following function emulates the DOS pause command:

function Pause
{
 Write-Host -NoNewLine "Press any key to continue . . . "
 [Console]::ReadKey($true) | Out-Null
 Write-Host
}

If you need to capture individual key down and key up events (including those of the
Ctrl, Alt, and Shift keys), use the $host.UI.RawUI.ReadKey() method.

12.3 Program: Display a Menu to the User
It is often useful to read input from the user but restrict it to a list of choices that you
specify. The following script lets you access PowerShell’s prompting functionality in a
manner that is friendlier than what PowerShell exposes by default. It returns a num-
ber that represents the position of their choice from the list of options you provide.

PowerShell's prompting requires that you include an accelerator key (the & before a
letter in the option description) to define the keypress that represents that option.
Since you don't always control the list of options (for example, a list of possible
directories), Example 12-1 automatically generates sensible accelerator characters for
any descriptions that lack them.

Example 12-1. Read-HostWithPrompt.ps1

##
##
Read-HostWithPrompt.ps1
##
Read user input, with choices restricted to the list of options you
provide.
##
ie:
##
PS >$caption = "Please specify a task"
PS >$message = "Specify a task to run"
PS >$option = "&Clean Temporary Files","&Defragment Hard Drive"
PS >$helptext = "Clean the temporary files from the computer",
>> "Run the defragment task"
>>
PS >$default = 1
PS >Read-HostWithPrompt $caption $message $option $helptext $default
##

212 | Chapter 12: User Interaction

Please specify a task
Specify a task to run
[C] Clean Temporary Files [D] Defragment Hard Drive [?] Help
(default is "D"):?
C - Clean the temporary files from the computer
D - Run the defragment task
[C] Clean Temporary Files [D] Defragment Hard Drive [?] Help
(default is "D"):C
0
##
##

param(
 $caption = $null,
 $message = $null,
 $option = $(throw "Please specify some options."),
 $helpText = $null,
 $default = 0
)

Create the list of choices
[Management.Automation.Host.ChoiceDescription[]] $choices = @()

Create a list of possible key accelerators for their options
$accelerators = New-Object System.Collections.ArrayList

First, add a the list of numbers as possible choices
$startNumber = [int][char] '0'
$endNumber = [int][char] '9'
foreach($number in $startNumber..$endNumber)
{
 [void] $accelerators.Add([char] $number)
}

Then, a list of characters as possible choices
$startLetter = [int][char] 'A'
$endLetter = [int][char] 'Z'
foreach($letter in $startLetter .. $endLetter)
{
 [void] $accelerators.Add([char] $letter)
}

Go through each of the options, and add them to the choice collection
for($counter = 0; $counter -lt $option.Length; $counter++)
{
 $optionText = $option[$counter]

 ## If they didn't provide an accelerator, generate new option
 ## text for them
 if($optionText -notmatch '&')
 {
 $optionText = "&{0} - {1}" -f $accelerators[0],$optionText
 }

Example 12-1. Read-HostWithPrompt.ps1 (continued)

12.4 Display Messages and Output to the User | 213

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

12.4 Display Messages and Output to the User

Problem
You want to display messages and other information to the user.

Solution
To ensure that the output actually reaches the screen, call the Write-Host (or Out-
Host) cmdlet:

PS >function Get-DirectorySize
>> {
>> $size = (Get-ChildItem | Measure-Object -Sum Length).Sum
>> Write-Host ("Directory size: {0:N0} bytes" -f $size)
>> }
>>
PS >Get-DirectorySize
Directory size: 46,581 bytes
PS >$size = Get-DirectorySize
Directory size: 46,581 bytes

 ## Now, remove their option character from the list of possibilities
 $acceleratorIndex = $optionText.IndexOf('&')
 $optionCharacter = $optionText[$acceleratorIndex + 1]
 $accelerators.Remove($optionCharacter)

 ## Create the choice
 $choice = New-Object Management.Automation.Host.ChoiceDescription $optionText
 if($helpText -and $helpText[$counter])
 {
 $choice.HelpMessage = $helpText[$counter]
 }

 ## Add the choice to the list of possible choices
 $choices += $choice
}

Prompt for the choice, returning the item the user selected
$host.UI.PromptForChoice($caption, $message, $choices, $default)

Example 12-1. Read-HostWithPrompt.ps1 (continued)

214 | Chapter 12: User Interaction

If you want a message to help you (or the user) diagnose and debug your script, use
the Write-Debug cmdlet. If you want a message to provide detailed trace-type output,
use the Write-Verbose cmdlet, as shown in Example 12-2.

Discussion
Most scripts that you write will output richly structured data, such as the actual
count of bytes in a directory. That way, other scripts can use the output of that script
as a building block for their functionality.

When you do want to provide output specifically to the user, use the Write-Host,
Write-Debug, and Write-Verbose cmdlets.

However, be aware that this type of output bypasses normal file redirection, and is
therefore difficult for the user to capture. In the case of the Write-Host cmdlet, use it
only when your script already generates other structured data that the user would
want to capture in a file or variable.

Most script authors eventually run into the problem illustrated by Example 12-3
when their script tries to output formatted data to the user.

Example 12-2. A function that provides debug and verbose output

PS >function Get-DirectorySize
>> {
>> Write-Debug "Current Directory: $(Get-Location)"
>>
>> Write-Verbose "Getting size"
>> $size = (Get-ChildItem | Measure-Object -Sum Length).Sum
>> Write-Verbose "Got size: $size"
>>
>> Write-Host ("Directory size: {0:N0} bytes" -f $size)
>> }
>>
PS >$DebugPreference = "Continue"
PS >Get-DirectorySize
DEBUG: Current Directory: D:\lee\OReilly\Scripts\Programs
Directory size: 46,581 bytes
PS >$DebugPreference = "SilentlyContinue"
PS >$VerbosePreference = "Continue"
PS >Get-DirectorySize
VERBOSE: Getting size
VERBOSE: Got size: 46581
Directory size: 46,581 bytes
PS >$VerbosePreference = "SilentlyContinue"

Example 12-3. An error message caused by formatting statements

PS >## Get the list of items in a directory, sorted by length
PS >function Get-ChildItemSortedByLength($path = (Get-Location))
>> {
>> Get-ChildItem $path | Format-Table | Sort Length
>> }

12.4 Display Messages and Output to the User | 215

This happens because the Format-* cmdlets actually generate formatting information
for the Out-Host cmdlet to consume. The Out-Host cmdlet (which PowerShell adds
automatically to the end of your pipelines) then uses this information to generate for-
matted output. To resolve this problem, always ensure that formatting commands
are the last commands in your pipeline, as shown in Example 12-4.

When it comes to producing output for the user, a common reason is to provide
progress messages. PowerShell actually supports this in a much richer way, through its
Write-Progress cmdlet. For more information about the Write-Progress cmdlet, see the
following section Recipe 12.5, “Provide Progress Updates on Long-Running Tasks.”

See Also
• Recipe 12.5, “Provide Progress Updates on Long-Running Tasks”

>>
PS >Get-ChildItemSortedByLength
out-lineoutput : Object of type "Microsoft.PowerShell.Commands.Internal.Fo
rmat.FormatEntryData" is not legal or not in the correct sequence. This is
likely caused by a user-specified "format-*" command which is conflicting
with the default formatting.

Example 12-4. A function that does not generate formatting errors

PS >## Get the list of items in a directory, sorted by length
PS >function Get-ChildItemSortedByLength($path = (Get-Location))
>> {
>> ## Problematic version
>> ## Get-ChildItem $path | Format-Table | Sort Length
>>
>> ## Fixed version
>> Get-ChildItem $path | Sort Length | Format-Table
>> }
>>
PS >Get-ChildItemSortedByLength

(...)

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/11/2007 3:21 PM 59 LibraryProperties.ps1
-a--- 3/6/2007 10:27 AM 150 Get-Tomorrow.ps1
-a--- 3/4/2007 3:10 PM 194 ConvertFrom-FahrenheitWithout
 Function.ps1
-a--- 3/4/2007 4:40 PM 257 LibraryTemperature.ps1
-a--- 3/4/2007 4:57 PM 281 ConvertFrom-FahrenheitWithLib
 rary.ps1
-a--- 3/4/2007 3:14 PM 337 ConvertFrom-FahrenheitWithFunc
 tion.ps1
(...)

Example 12-3. An error message caused by formatting statements (continued)

216 | Chapter 12: User Interaction

12.5 Provide Progress Updates on Long-Running Tasks

Problem
You want to display status information to the user for long-running tasks.

Solution
To provide status updates, use the Write-Progress cmdlet as shown in Example 12-5.

Discussion
The Write-Progress cmdlet provides a way for you to provide structured status infor-
mation to the users of your script for long-running operations (see Figure 12-1).

Like the other detailed information channels (Write-Debug, Write-Verbose, and the
other Write-* cmdlets), PowerShell lets users control how much of this information
they see.

For more information about the Write-Progress cmdlet, type Get-Help Write-
Progress.

Example 12-5. Using the Write-Progress cmdlet to display status updates

$activity = "A long-running operation"

$status = "Initializing"
Initialize the long-running operation
for($counter = 0; $counter -lt 100; $counter++)
{
 $currentOperation = "Initializing item $counter"
 Write-Progress $activity $status -PercentComplete $counter `
 -CurrentOperation $currentOperation
 Start-Sleep -m 20
}

$status = "Running"
Initialize the long-running operation
for($counter = 0; $counter -lt 100; $counter++)
{
 $currentOperation = "Running task $counter"
 Write-Progress $activity $status -PercentComplete $counter `
 -CurrentOperation $currentOperation
 Start-Sleep -m 20
}

12.6 Write Culture-Aware Scripts | 217

12.6 Write Culture-Aware Scripts

Problem
You want to ensure that your script works well on computers from around the
world.

Solution
To write culture-aware scripts, keep the following guidelines in mind as you develop
your scripts:

• Create dates, times, and numbers using PowerShell’s language primitives.

• Compare strings using PowerShell’s built-in operators.

• Avoid treating user input as a collection of characters.

• Use Parse() methods to convert user input to dates, times, and numbers.

Discussion
Writing culture-aware programs has long been isolated to the world of professional
software developers. It’s not that users of simple programs and scripts can’t benefit

Figure 12-1. Example output from a long-running operation

218 | Chapter 12: User Interaction

from culture awareness though. It has just frequently been too difficult for non-
professional programmers to follow the best practices. PowerShell makes this
much easier than traditional programming languages however.

As your script travels between different cultures, several things change.

Date, time, and number formats

Most cultures have unique date, time, and number formats. To ensure that your
script works in all cultures, PowerShell first ensures that its language primitives
remain consistent no matter where your script runs. Even if your script runs on a
machine in France (which uses a comma for its decimal separator), you can always
rely on the statement $myDouble = 3.5 to create a number halfway between three and
four. Likewise, you can always count on the statement $christmas = [DateTime] "12/
25/2007" to create a date that represents Christmas in 2007—even in cultures that
write dates in the order of day, month, year.

Culturally aware programs always display dates, times, and numbers using the pref-
erences of that culture. This doesn’t break scripts as they travel between cultures and
is an important aspect of writing culture-aware scripts. PowerShell handles this for
you, as it uses the current culture’s preferences whenever it displays data.

If your script asks the user for a date, time, or number, make sure that
you respect the format of the user’s culture’s when you do so. To con-
vert user input to a specific type of data, use that type’s Parse() method.

$userInput = Read-Host "Please enter a date"

$enteredDate = [DateTime]::Parse($userInput)

So, to ensure that your script remains culture-aware with respect to dates, times, and
number formats, simply use PowerShell’s language primitives when you define them
in your script. When you read them from the user, use Parse() methods when you
convert them from strings.

Complexity of user input and file content

English is a rare language in that its alphabet is so simple. This leads to all kinds of
programming tricks that treat user input and file content as arrays of bytes or simple
plain-text (ASCII) characters. In most international languages, these tricks fail. In
fact, many international symbols take up two characters’ worth of data in the string
that contains them.

PowerShell uses the standard Unicode format for all string-based operations: read-
ing input from the user, displaying output to the user, sending data through the pipe-
line, and working with files.

12.6 Write Culture-Aware Scripts | 219

Although PowerShell fully supports Unicode, the powershell.exe com-
mand-line host does not output some characters correctly, due to limi-
tations in the Windows console system. Graphical PowerShell hosts
(such as the several third-party PowerShell IDEs) are not affected by
these limitations however.

If you use PowerShell’s standard features when working with user input, you do not
have to worry about its complexity. If you want to work with individual characters
or words in the input, though, you will need to take special precautions. The System.
Globalization.StringInfo class lets you do this in a culturally aware way. For more
information about working with the StringInfo class, see http://msdn2.microsoft.
com/en-us/library/7h9tk6x8(vs.71).aspx.

So, to ensure that your script remains culturally aware with respect to user input,
simply use PowerShell’s support for string operations whenever possible.

Capitalization rules

A common requirement in scripts is to compare user input against some predefined
text (such as a menu selection). You normally want this comparison to be case insen-
sitive, so that “QUIT” and “qUiT” mean the same thing.

The most common way to accomplish this is to convert the user input to uppercase
or lowercase:

$text comes from the user, and contains the value "quit"
if($text.ToUpper() -eq "QUIT") { ... }

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways
when run in different cultures, as many cultures have different capitalization and
comparison rules. For example, the Turkish language includes two types of the letter
“I”: one with a dot, and one without. The uppercase version of the lowercase letter
“i” corresponds to the version of the capital “I” with a dot, not the capital “I” used in
QUIT. That example causes the above string comparison to fail on a Turkish system.

To compare some input against a hard-coded string in a case-insensitive manner, the
better solution is to use PowerShell’s –eq operator without changing any of the cas-
ing yourself. The –eq operator is case-insensitive and culture-neutral by default:

PS >$text1 = "Hello"
PS >$text2 = "HELLO"
PS >$text1 –eq $text2
True

So, to ensure that your script remains culturally aware with respect to capitaliza-
tion rules, simply use PowerShell’s case-insensitive comparison operators when-
ever possible.

220 | Chapter 12: User Interaction

Sorting rules

Sorting rules frequently change between cultures. For example, compare English and
Danish with the script given in Recipe 12.7, “Program: Invoke a Script Block with
Alternate Culture Settings:”

PS >Use-Culture en-US { "Apple","Æble" | Sort-Object }
Æble
Apple
PS >Use-Culture da-DK { "Apple","Æble" | Sort-Object }
Apple
Æble

To ensure that your script remains culturally aware with respect to sorting rules,
assume that output is sorted correctly after you sort it—but don’t depend on the
actual order of sorted output.

Other guidelines

For other resources on these factors for writing culturally aware programs, see http://
msdn2.microsoft.com/en-us/library/h6270d0z(vs.71).aspx and http://www.microsoft.
com/globaldev/getwr/steps/wrguide.mspx.

See Also
• Recipe 12.7, “Program: Invoke a Script Block with Alternate Culture Settings”

12.7 Program: Invoke a Script Block with Alternate
Culture Settings

Given PowerShell’s diverse user community, scripts that you share will often be run
on a system set to a language other than English. To ensure that your script runs
properly in other languages, it is helpful to give it a test run in that culture.
Example 12-6 lets you run the script block you provide in a culture of your choosing.

Example 12-6. Use-Culture.ps1

##
##
Use-Culture.ps1
##
Invoke a scriptblock under the given culture
##
ie:
##
PS >Use-Culture fr-FR { [DateTime]::Parse("25/12/2007") }
##
mardi 25 décembre 2007 00:00:00##
##
##

12.8 Access Features of the Host’s User Interface | 221

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

12.8 Access Features of the Host’s User Interface

Problem
You want to interact with features in the user interface of the hosting application,
but PowerShell doesn’t directly provide cmdlets for them.

Solution
To access features of the host’s user interface, use the $host.UI.RawUI variable:

$host.UI.RawUI.WindowTitle = (Get-Location)

param(
 [System.Globalization.CultureInfo] $culture =
 $(throw "Please specify a culture"),
 [ScriptBlock] $script = $(throw "Please specify a scriptblock")
)

A helper function to set the current culture
function Set-Culture([System.Globalization.CultureInfo] $culture)
{
 [System.Threading.Thread]::CurrentThread.CurrentUICulture = $culture
 [System.Threading.Thread]::CurrentThread.CurrentCulture = $culture
}

Remember the original culture information
$oldCulture = [System.Threading.Thread]::CurrentThread.CurrentUICulture

Restore the original culture information if
the user's script encounters errors.
trap { Set-Culture $oldCulture }

Set the current culture to the user's provided
culture.
Set-Culture $culture

Invoke the user's scriptblock
& $script

Restore the original culture information.
Set-Culture $oldCulture

Example 12-6. Use-Culture.ps1 (continued)

222 | Chapter 12: User Interaction

Discussion
PowerShell itself consists of two main components. The first is an engine that inter-
prets commands, executes pipelines, and performs other similar actions. The second
is the hosting application—the way that users interact with the PowerShell engine.

The default shell, PowerShell.exe, is a user interface based on the traditional Win-
dows console. Other applications exist that host PowerShell in a graphical user inter-
face. In fact, PowerShell makes it relatively simple for developers to build their own
hosting applications, or even to embed the PowerShell engine features into their own
application.

You (and your scripts) can always depend on the functionality available through the
$host.UI variable, as that functionality remains the same for all hosts. Example 12-7
shows the features available to you in all hosts.

If you (or your scripts) want to interact with portions of the user interface specific to
the current host, PowerShell provides that access through the $host.UI.RawUI vari-
able. Example 12-8 shows the features available to you in the PowerShell console host.

Example 12-7. Functionality available through the $host.UI property

PS >$host.UI | Get-Member | Select Name,MemberType | Format-Table -Auto

Name MemberType
---- ----------
(...)
Prompt Method
PromptForChoice Method
PromptForCredential Method
ReadLine Method
ReadLineAsSecureString Method
Write Method
WriteDebugLine Method
WriteErrorLine Method
WriteLine Method
WriteProgress Method
WriteVerboseLine Method
WriteWarningLine Method
RawUI Property

Example 12-8. Functionality available through the default console host

PS >$host.UI.RawUI | Get-Member |
>> Select Name,MemberType | Format-Table -Auto
>>

Name MemberType
---- ----------
(...)
FlushInputBuffer Method
GetBufferContents Method

12.9 Program: Add a Graphical User Interface to Your Script | 223

If you rely on the host-specific features from $host.UI.RawUI, be aware that your
script will require modifications (perhaps major) before it will run properly on other
hosts.

12.9 Program: Add a Graphical User Interface to Your
Script

While the techniques provided in the rest of this chapter are usually all you need, it is
sometimes helpful to provide a graphical user interface to interact with the user.

Since PowerShell fully supports traditional executables, simple programs can usually
fill this need. If creating a simple program in an environment such as Visual Studio is
inconvenient, you can often use PowerShell to create these applications directly.

Example 12-9 demonstrates the techniques you can use to develop a Windows
Forms application using PowerShell scripting alone.

GetHashCode Method
GetType Method
LengthInBufferCells Method
NewBufferCellArray Method
ReadKey Method
ScrollBufferContents Method
SetBufferContents Method
BackgroundColor Property
BufferSize Property
CursorPosition Property
CursorSize Property
ForegroundColor Property
KeyAvailable Property
MaxPhysicalWindowSize Property
MaxWindowSize Property
WindowPosition Property
WindowSize Property
WindowTitle Property

Example 12-9. Select-GraphicalFilteredObject.ps1

##
##
Select-GraphicalFilteredObject.ps1
##
Display a Windows Form to help the user select a list of items piped in.
Any selected items get passed along the pipeline.
##
ie:
##
PS >dir | Select-GraphicalFilteredObject
##

Example 12-8. Functionality available through the default console host (continued)

224 | Chapter 12: User Interaction

Directory: Microsoft.PowerShell.Core\FileSystem::C:\
##
##
Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 3/18/2007 7:56 PM Windows
##
##

$objectArray = @($input)

Ensure that they've piped information into the script
if($objectArray.Count -eq 0)
{
 Write-Error "This script requires pipeline input."
 return
}

Load the Windows Forms assembly
[void] [Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

Create the main form
$form = New-Object Windows.Forms.Form
$form.Size = New-Object Drawing.Size @(600,600)

Create the listbox to hold the items from the pipeline
$listbox = New-Object Windows.Forms.CheckedListBox
$listbox.CheckOnClick = $true
$listbox.Dock = "Fill"
$form.Text = "Select the list of objects you wish to pass down the pipeline"
$listBox.Items.AddRange($objectArray)

Create the button panel to hold the OK and Cancel buttons
$buttonPanel = New-Object Windows.Forms.Panel
$buttonPanel.Size = New-Object Drawing.Size @(600,30)
$buttonPanel.Dock = "Bottom"

Create the Cancel button, which will anchor to the bottom right
$cancelButton = New-Object Windows.Forms.Button
$cancelButton.Text = "Cancel"
$cancelButton.DialogResult = "Cancel"
$cancelButton.Top = $buttonPanel.Height - $cancelButton.Height - 5
$cancelButton.Left = $buttonPanel.Width - $cancelButton.Width - 10
$cancelButton.Anchor = "Right"

Create the OK button, which will anchor to the left of Cancel
$okButton = New-Object Windows.Forms.Button
$okButton.Text = "Ok"
$okButton.DialogResult = "Ok"
$okButton.Top = $cancelButton.Top
$okButton.Left = $cancelButton.Left - $okButton.Width - 5
$okButton.Anchor = "Right"

Example 12-9. Select-GraphicalFilteredObject.ps1 (continued)

12.9 Program: Add a Graphical User Interface to Your Script | 225

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Add the buttons to the button panel
$buttonPanel.Controls.Add($okButton)
$buttonPanel.Controls.Add($cancelButton)

Add the button panel and list box to the form, and also set
the actions for the buttons
$form.Controls.Add($listBox)
$form.Controls.Add($buttonPanel)
$form.AcceptButton = $okButton
$form.CancelButton = $cancelButton
$form.Add_Shown({ $form.Activate() })

Show the form, and wait for the response
$result = $form.ShowDialog()

If they pressed OK (or Enter,) go through all the
checked items and send the corresponding object down the pipeline
if($result -eq "OK")
{
 foreach($index in $listBox.CheckedIndices)
 {
 $objectArray[$index]
 }
}

Example 12-9. Select-GraphicalFilteredObject.ps1 (continued)

226

Chapter 13CHAPTER 13

Tracing and Error Management 14

13.0 Introduction
What if it doesn’t all go according to plan? This is the core question behind error
management in any system and plays a large part in writing PowerShell scripts as well.

While it is a core concern in many systems, PowerShell’s support for error manage-
ment provides several unique features designed to make your job easier: the primary
benefit being a distinction between terminating and nonterminating errors.

When running a complex script or scenario, the last thing you want is for your world
to come crashing down because a script can’t open one of the 1,000 files it is operat-
ing on. Although it should make you aware of the failure, the script should still con-
tinue to the next file. That is an example of a nonterminating error. But what if the
script runs out of disk space while running a backup? That should absolutely be an
error that causes the script to exit—also known as a terminating error.

Given this helpful distinction, PowerShell provides several features that allow you to
manage errors generated by scripts and programs, and also allows you to generate
them yourself.

13.1 View the Errors Generated by a Command

Problem
You want to view the errors generated in the current session.

Solution
To access the list of errors generated so far, use the $error variable, as shown by
Example 13-1.

13.1 View the Errors Generated by a Command | 227

Discussion
The PowerShell $error variable always holds the list of errors generated so far in the
current shell session. This list includes both terminating and nonterminating errors.

By default, PowerShell displays error records in a customized view. If you want to
view an error in a table or list (through the Format-Table or Format-List cmdlets),
you must also specify the –Force option to override this customized view.

If you want to display errors in a more compact manner, PowerShell supports an
additional view called CategoryView that you set through the $errorView preference
variable:

PS >Get-ChildItem IDoNotExist
Get-ChildItem : Cannot find path 'C:\IDoNotExist' because it does not exist.
At line:1 char:4
+ Get-ChildItem <<<< IDoNotExist
PS >$errorView = "CategoryView"
PS >Get-ChildItem IDoNotExist
ObjectNotFound: (C:\IDoNotExist:String) [Get-ChildItem], ItemNotFoundExcep
tion

To clear the list of errors, call the Clear() method on the $error list:

PS >$error.Count
2
PS >$error.Clear()
PS >$error.Count
0

For more information about PowerShell’s preference variables, see Appendix C,
PowerShell Automatic Variables. If you want to determine only the success or failure
of the last command, see Recipe 1.10, “Determine the Status of the Last Command.”

Example 13-1. Viewing errors contained in the $error variable

PS >1/0
Attempted to divide by zero.
At line:1 char:3
+ 1/0 <<<<
PS >$error[0] | Format-List -Force

ErrorRecord : Attempted to divide by zero.
StackTrace : at System.Management.Automation.Parser.ExpressionNode.A
 (...)
Message : Attempted to divide by zero.
Data : {}
InnerException : System.DivideByZeroException: Attempted to divide by zero.
 at System.Management.Automation.ParserOps.polyDiv(Execu
 val, Object rval)
TargetSite : System.Collections.ObjectModel.Collection`1[System.Managem
 ctions.IEnumerable)
HelpLink :
Source : System.Management.Automation

228 | Chapter 13: Tracing and Error Management

See Also
• Recipe 1.10, “Determine the Status of the Last Command”

• Appendix C, PowerShell Automatic Variables

13.2 Handle Warnings, Errors, and Terminating Errors

Problem
You want to handle warnings, errors, and terminating errors generated by scripts or
other tools that you call.

Solution
To control how your script responds to warning messages, set the
$warningPreference variable. In this example, to ignore them:

$warningPreference = "SilentlyContinue"

To control how your script responds to nonterminating errors, set the
$errorActionPreference variable. In this example, to ignore them:

$errorActionPreference = "SilentlyContinue"

To control how your script responds to terminating errors, use the trap statement. In
this example, to output a message and continue with the script:

trap [DivideByZeroException] { "Don't divide by zero!"; continue }

Discussion
PowerShell defines several preference variables that help you control how your script
reacts to warnings, errors, and terminating errors. As an example of these error man-
agement techniques, consider the following script:

##
##
Get-WarningsAndErrors.ps1
##
Demonstrates the functionality of the Write-Warning, Write-Error, and throw
statements
##
##

Write-Warning "Warning: About to generate an error"
Write-Error "Error: You are running this script"
throw "Could not complete operation."

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

You can now see how a script might manage those separate types of errors:

13.2 Handle Warnings, Errors, and Terminating Errors | 229

PS >$warningPreference = "Continue"
PS >Get-WarningsAndErrors.ps1
WARNING: Warning: About to generate an error
.. Get-WarningsAndErrors.ps1 : Error: You are
 running this script
At line:1 char:27
+ Get-WarningsAndErrors.ps1 <<<<
Could not complete operation.
At .. Get-WarningsAndErrors.ps1:12 char:6
+ throw <<<< "Could not complete operation."

Once you modify the warning preference, the original warning message gets sup-
pressed:

PS >$warningPreference = "SilentlyContinue"
PS >Get-WarningsAndErrors.ps1
.. Get-WarningsAndErrors.ps1 : Error: You are
 running this script
At line:1 char:27
+ Get-WarningsAndErrors.ps1 <<<<
Could not complete operation.
At .. Get-WarningsAndErrors.ps1:12 char:6
+ throw <<<< "Could not complete operation."

When you modify the error preference, you suppress errors and exceptions, as well:

PS >$errorActionPreference = "SilentlyContinue"
PS >Get-WarningsAndErrors.ps1
PS >

An addition to the $errorActionPreference variable, all cmdlets allow you to specify
your preference during an individual call:

PS >$errorActionPreference = "Continue"
PS >Get-ChildItem IDoNotExist
Get-ChildItem : Cannot find path '...\IDoNotExist' because it does not exist.
At line:1 char:14
+ Get-ChildItem <<<< IDoNotExist
PS >Get-ChildItem IDoNotExist -ErrorAction SilentlyContinue
PS >

If you reset the error preference back to Continue, you can see the impact of a trap
statement. The message from the Write-Error call makes it through, but the excep-
tion does not:

PS >$errorActionPreference = "Continue"
PS >trap { "Caught an error"; continue }; Get-WarningsAndErrors
.. Get-WarningsAndErrors.ps1 : Error: You are
 running this script
At line:1 char:61
+ trap { "Caught an error"; continue }; Get-WarningsAndErrors <<<<
Caught an error

For more information about error management in PowerShell, see “Managing
Errors” in Appendix A. For more detailed information about the valid settings of
these preference variables, see Appendix C, PowerShell Automatic Variables.

230 | Chapter 13: Tracing and Error Management

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• “Managing Errors” in Appendix A

• Appendix C, PowerShell Automatic Variables

13.3 Output Warnings, Errors, and Terminating Errors

Problem
You want your script to notify its caller of a warning, error, or terminating error.

##
##
Get-WarningsAndErrors.ps1
##
Demonstrates the functionality of the Write-Warning, Write-Error, and throw
statements
##
##

Write-Warning "Warning: About to generate an error"
Write-Error "Error: You are running this script"
throw "Could not complete operation."

Solution
To write warnings and errors, use the Write-Warning and Write-Error cmdlets,
respectively. Use the throw statement to generate a terminating error.

Discussion
When you need to notify the caller of your script about an unusual condition, the
Write-Warning, Write-Error, and throw statements are the way to do it. If your user
should consider the message as more of a warning, use the Write-Warning cmdlet. If
your script encounters an error (but can reasonably continue past that error), use the
Write-Error cmdlet. If the error is fatal and your script simply cannot continue, use a
throw statement.

For information on how to handle these errors when thrown by other scripts, see
Recipe 13.2, “Handle Warnings, Errors, and Terminating Errors.” For more informa-
tion about error management in PowerShell, see “Managing Errors” in Appendix A.
For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

13.4 Debug a Script | 231

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 13.2, “Handle Warnings, Errors, and Terminating Errors”

• “Managing Errors” in Appendix A

13.4 Debug a Script

Problem
You want to diagnose failures or unexpected behavior in a script interactively.

Solution
To generate debugging statements from your script, Use the Write-Debug cmdlet. If
you want to step through a region carefully, surround it with Set-PsDebug –Step calls.
To explore the environment at a specific point of execution, add a line that calls
$host.EnterNestedPrompt().

Discussion
By default, PowerShell allows you to assign data to variables you haven’t yet created
(thereby creating those variables). It also allows you to retrieve data from variables
that don’t exist—which usually happens by accident and almost always causes bugs.
To help save you from getting stung by this problem, PowerShell provides a strict
mode that generates an error if you attempt to access a nonexisting variable.
Example 13-2 demonstrates this mode.

For the sake of your script debugging health and sanity, strict mode should be one of
the first additions you make to your PowerShell profile.

Example 13-2. PowerShell operating in strict mode

PS >$testVariable = "Hello"
PS >$tsetVariable += " World"
PS >$testVariable
Hello
PS >Remove-Item Variable:\tsetvariable
PS >Set-PsDebug -Strict
PS >$testVariable = "Hello"
PS >$tsetVariable += " World"
The variable $tsetVariable cannot be retrieved because it has not been set
 yet.
At line:1 char:14
+ $tsetVariable <<<< += " World"

232 | Chapter 13: Tracing and Error Management

When it comes to interactive debugging (as opposed to bug prevention), PowerShell
supports several of the most useful debugging features that you might be accus-
tomed to: tracing (through the Set-PsDebug –Trace statement), stepping (through the
Set-PsDebug –Step statement), and environment inspection (through the $host.
EnterNestedPrompt() call).

As a demonstration of these techniques, consider Example 13-3.

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

As you try to determine why this script isn’t working as you expect, a debugging ses-
sion might look like Example 13-4.

Example 13-3. A complex script that interacts with PowerShell’s debugging features

##
##
Invoke-ComplexScript.ps1
##
Demonstrates the functionality of PowerShell's debugging support.
##
##

Write-Host "Calculating lots of complex information"

$runningTotal = 0
$runningTotal += [Math]::Pow(5 * 5 + 10, 2)

Write-Debug "Current value: $runningTotal"

Set-PsDebug -Trace 1
$dirCount = @(Get-ChildItem $env:WINDIR).Count

Set-PsDebug -Trace 2
$runningTotal -= 10
$runningTotal /= 2

Set-PsDebug -Step
$runningTotal *= 3
$runningTotal /= 2

$host.EnterNestedPrompt()

Set-PsDebug -off

Example 13-4. Debugging a complex script

PS >$debugPreference = "Continue"
PS >Invoke-ComplexScript.ps1
Calculating lots of complex information
DEBUG: Current value: 1225

13.4 Debug a Script | 233

While not built into a graphical user interface, PowerShell’s interactive debugging
features are bound to help you diagnose and resolve problems quickly.

For more information about the Set-PsDebug cmdlet, type Get-Help Set-PsDebug.

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

DEBUG: 17+ $dirCount = @(Get-ChildItem $env:WINDIR).Count
DEBUG: 17+ $dirCount = @(Get-ChildItem $env:WINDIR).Count
DEBUG: 19+ Set-PsDebug -Trace 2
DEBUG: 20+ $runningTotal -= 10
DEBUG: ! SET $runningTotal = '1215'.
DEBUG: 21+ $runningTotal /= 2
DEBUG: ! SET $runningTotal = '607.5'.
DEBUG: 23+ Set-PsDebug -Step

Continue with this operation?
 24+ $runningTotal *= 3
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 24+ $runningTotal *= 3
DEBUG: ! SET $runningTotal = '1822.5'.

Continue with this operation?
 25+ $runningTotal /= 2
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 25+ $runningTotal /= 2
DEBUG: ! SET $runningTotal = '911.25'.

Continue with this operation?
 27+ $host.EnterNestedPrompt()
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 27+ $host.EnterNestedPrompt()
DEBUG: ! CALL method 'System.Void EnterNestedPrompt()'
PS >$dirCount
296
PS >$dirCount + $runningTotal
1207.25
PS >exit

Continue with this operation?
 29+ Set-PsDebug -off
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 29+ Set-PsDebug -off

Example 13-4. Debugging a complex script (continued)

234 | Chapter 13: Tracing and Error Management

13.5 Collect Detailed Traces of a Script or Command

Problem
You want to access detailed debugging or diagnostic information for the execution of
a script or command.

Solution
To trace a script as it executes, use the -Trace parameter of the Set-PsDebug cmdlet.

To view detailed trace output for the PowerShell engine and its cmdlets, use the
Trace-Command cmdlet.

Discussion
The Set-PsDebug cmdlet lets you configure the amount of debugging detail that Pow-
erShell provides during the execution of a script. By setting the -Trace parameter,
PowerShell lets you see the lines of script as PowerShell executes them. For more
information about the Set-PsDebug cmdlet, see Recipe 13.4, “Debug a Script.”

When you want to investigate issues in the way that your code interacts with Power-
Shell, or with PowerShell commands, use the Trace-Command cmdlet. The Trace-
Command cmdlet provides a huge amount of detail, intended mainly for in-depth prob-
lem analysis.

For example, to gain some insight into why PowerShell can’t seem to find your
script:

Trace-Command CommandDiscovery -PsHost { ScriptInTheCurrentDirectory.ps1 }

The Trace-Command cmdlet takes a trace source (for example, CommandDiscovery), a
destination (usually –PsHost or –File), and a script block to trace. The output of this
command shows that PowerShell never actually searches the current directory for
your script, so you need to be explicit: .\ScriptInTheCurrentDirectory.ps1.

For more information about the Trace-Command cmdlet, type Get-Help Trace-Command.
To learn what trace sources are available, see the command Get-TraceSource.

See Also
• Recipe 13.4, “Debug a Script”

13.6 Program: Analyze a Script’s Performance Profile
When you write scripts that heavily interact with the user, you may sometimes feel
that your script could benefit from better performance.

13.6 Program: Analyze a Script’s Performance Profile | 235

When tackling performance problems, the first rule is to measure the problem.
Unless you can guide your optimization efforts with hard performance data, you are
almost certainly directing your efforts to the wrong spots. Random cute perfor-
mance improvements will quickly turn your code into an unreadable mess, often
with no appreciable performance gain! Low-level optimization has its place, but it
should always be guided by hard data that supports it.

The way to obtain hard performance data is from a profiler. PowerShell doesn’t ship
with a script profiler, but Example 13-5 uses PowerShell features to implement one.

Example 13-5. Get-ScriptPerformanceProfile.ps1

##
##
Get-ScriptPerformanceProfile.ps1
##
Computes the performance characteristics of a script, based on the transcript
of it running at trace level 1.
##
To profile a script:
1) Turn on script tracing in the window that will run the script:
Set-PsDebug -trace 1
2) Turn on the transcript for the window that will run the script:
Start-Transcript
(Note the filename that PowerShell provides as the logging destination.)
3) Type in the script name, but don't actually start it.
4) Open another PowerShell window, and navigate to the directory holding
this script. Type in 'Get-ScriptPerformanceProfile <transcript>',
replacing <transcript> with the path given in step 2. Don't
press <Enter> yet.
5) Switch to the profiled script window, and start the script.
Switch to the window containing this script, and press <Enter>
6) Wait until your profiled script exits, or has run long enough to be
representative of its work. To be statistically accurate, your script
should run for at least ten seconds.
7) Switch to the window running this script, and press a key.
8) Switch to the window holding your profiled script, and type:
Stop-Transcript
9) Delete the transcript.
##
Note: You can profile regions of code (ie: functions) rather than just lines
by placing the following call at the start of the region:
write-debug "ENTER <region_name>"
and the following call and the end of the region:
write-debug "EXIT"
This is implemented to account exclusively for the time spent in that
region, and does not include time spent in regions contained within the
region. For example, if FunctionA calls FunctionB, and you've surrounded
each by region markers, the statistics for FunctionA will not include the
statistics for FunctionB.
##
##

236 | Chapter 13: Tracing and Error Management

param($logFilePath = $(throw "Please specify a path to the transcript log file."))

function Main
{
 ## Run the actual profiling of the script. $uniqueLines gets
 ## the mapping of line number to actual script content.
 ## $samples gets a hashtable mapping line number to the number of times
 ## we observed the script running that line.
 $uniqueLines = @{}
 $samples = GetSamples $uniqueLines

 "Breakdown by line:"
 "----------------------------"

 ## Create a new hash table that flips the $samples hashtable --
 ## one that maps the number of times sampled to the line sampled.
 ## Also, figure out how many samples we got altogether.
 $counts = @{}
 $totalSamples = 0;
 foreach($item in $samples.Keys)
 {
 $counts[$samples[$item]] = $item
 $totalSamples += $samples[$item]
 }

 ## Go through the flipped hashtable, in descending order of number of
 ## samples. As we do so, output the number of samples as a percentage of
 ## the total samples. This gives us the percentage of the time our script
 ## spent executing that line.
 foreach($count in ($counts.Keys | Sort-Object -Descending))
 {
 $line = $counts[$count]
 $percentage = "{0:#0}" -f ($count * 100 / $totalSamples)
 "{0,3}%: Line {1,4} -{2}" -f $percentage,$line,
 $uniqueLines[$line]
 }

 ## Go through the transcript log to figure out which lines are part of any
 ## marked regions. This returns a hashtable that maps region names to
 ## the lines they contain.
 ""
 "Breakdown by marked regions:"
 "----------------------------"
 $functionMembers = GenerateFunctionMembers

 ## For each region name, cycle through the lines in the region. As we
 ## cycle through the lines, sum up the time spent on those lines and output
 ## the total.
 foreach($key in $functionMembers.Keys)
 {
 $totalTime = 0
 foreach($line in $functionMembers[$key])

Example 13-5. Get-ScriptPerformanceProfile.ps1 (continued)

13.6 Program: Analyze a Script’s Performance Profile | 237

 {
 $totalTime += ($samples[$line] * 100 / $totalSamples)
 }

 $percentage = "{0:#0}" -f $totalTime
 "{0,3}%: {1}" -f $percentage,$key
 }
}

Run the actual profiling of the script. $uniqueLines gets
the mapping of line number to actual script content.
Return a hashtable mapping line number to the number of times
we observed the script running that line.
function GetSamples($uniqueLines)
{
 ## Open the log file. We use the .Net file I/O, so that we keep monitoring
 ## just the end of the file. Otherwise, we would make our timing inaccurate
 ## as we scan the entire length of the file every time.
 $logStream = [System.IO.File]::Open($logFilePath, "Open", "Read", "ReadWrite")
 $logReader = New-Object System.IO.StreamReader $logStream

 $random = New-Object Random
 $samples = @{}

 $lastCounted = $null

 ## Gather statistics until the user presses a key.
 while(-not $host.UI.RawUI.KeyAvailable)
 {
 ## We sleep a slightly random amount of time. If we sleep a constant
 ## amount of time, we run the very real risk of improperly sampling
 ## scripts that exhibit periodic behaviour.
 $sleepTime = [int] ($random.NextDouble() * 100.0)
 Start-Sleep -Milliseconds $sleepTime

 ## Get any content produced by the transcript since our last poll.
 ## From that poll, extract the last DEBUG statement (which is the last
 ## line executed.)
 $rest = $logReader.ReadToEnd()
 $lastEntryIndex = $rest.LastIndexOf("DEBUG: ")

 ## If we didn't get a new line, then the script is still working on the
 ## last line that we captured.
 if($lastEntryIndex -lt 0)
 {
 if($lastCounted) { $samples[$lastCounted] ++ }
 continue;
 }

 ## Extract the debug line.
 $lastEntryFinish = $rest.IndexOf("\n", $lastEntryIndex)
 if($lastEntryFinish -eq -1) { $lastEntryFinish = $rest.length }

Example 13-5. Get-ScriptPerformanceProfile.ps1 (continued)

238 | Chapter 13: Tracing and Error Management

 $scriptLine = $rest.Substring(
 $lastEntryIndex, ($lastEntryFinish -
 $lastEntryIndex)).Trim()
 if($scriptLine -match 'DEBUG:[\t]*([0-9]*)\+(.*)')
 {
 ## Pull out the line number from the line
 $last = $matches[1]

 $lastCounted = $last
 $samples[$last] ++

 ## Pull out the actual script line that matches the line number
 $uniqueLines[$last] = $matches[2]
 }

 ## Discard anything that's buffered during this poll, and start waiting
 ## again
 $logReader.DiscardBufferedData()
 }

 ## Clean up
 $logStream.Close()
 $logReader.Close()

 $samples
}

Go through the transcript log to figure out which lines are part of any
marked regions. This returns a hashtable that maps region names to
the lines they contain.
function GenerateFunctionMembers
{
 ## Create a stack that represents the callstack. That way, if a marked
 ## region contains another marked region, we attribute the statistics
 ## appropriately.
 $callstack = New-Object System.Collections.Stack
 $currentFunction = "Unmarked"
 $callstack.Push($currentFunction)

 $functionMembers = @{}

 ## Go through each line in the transcript file, from the beginning
 foreach($line in (Get-Content $logFilePath))
 {
 ## Check if we're entering a monitor block
 ## If so, store that we're in that function, and push it onto
 ## the callstack.
 if($line -match 'write-debug "ENTER (.*)"')
 {
 $currentFunction = $matches[1]
 $callstack.Push($currentFunction)
 }

Example 13-5. Get-ScriptPerformanceProfile.ps1 (continued)

13.6 Program: Analyze a Script’s Performance Profile | 239

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

 ## Check if we're exiting a monitor block
 ## If so, clear the "current function" from the callstack,
 ## and store the new "current function" onto the callstack.
 elseif($line -match 'write-debug "EXIT"')
 {
 [void] $callstack.Pop()
 $currentFunction = $callstack.Peek()
 }
 ## Otherwise, this is just a line with some code.
 ## Add the line number as a member of the "current function"
 else
 {
 if($line -match 'DEBUG:[\t]*([0-9]*)\+')
 {
 ## Create the arraylist if it's not initialized
 if(-not $functionMembers[$currentFunction])
 {
 $functionMembers[$currentFunction] =
 New-Object System.Collections.ArrayList
 }

 ## Add the current line to the ArrayList
 if(-not $functionMembers[$currentFunction].Contains($matches[1]))
 {
 [void] $functionMembers[$currentFunction].Add($matches[1])
 }
 }
 }
 }

 $functionMembers
}

. Main

Example 13-5. Get-ScriptPerformanceProfile.ps1 (continued)

240

Chapter 14CHAPTER 14

Environmental Awareness 15

14.0 Introduction
While many of your scripts will be designed to work in isolation, you will often find
it helpful to give your script information about its execution environment: its name,
current working directory, environment variables, common system paths, and more.

PowerShell offers several ways to get at this information—from its cmdlets, to built-
in variables, to features that it offers from the .NET Framework.

14.1 View and Modify Environment Variables

Problem
You want to interact with your system’s environment variables.

Solution
To interact with environment variables, access them in almost the same way that you
access regular PowerShell variables. The only difference is that you place env:
between the ($) dollar sign and the variable name:

PS >$env:Username
Lee

You can modify environment variables this way, too. For example, to temporarily
add the current directory to the path:

PS >Invoke-DemonstrationScript
The term 'Invoke-DemonstrationScript' is not recognized as a cmdlet, funct
ion, operable program, or script file. Verify the term and try again.
At line:1 char:26
+ Invoke-DemonstrationScript <<<<
PS >$env:PATH = $env:PATH + ";."
PS >Invoke-DemonstrationScript.ps1
The script ran!

14.1 View and Modify Environment Variables | 241

Discussion
In batch files, environment variables are the primary way to store temporary infor-
mation, or to transfer information between batch files. PowerShell variables and
script parameters are more effective ways to solve those problems, but environment
variables continue to provide a useful way to access common system settings, such as
the system’s path, temporary directory, domain name, username, and more.

PowerShell surfaces environment variables through its environment provider—a con-
tainer that lets you work with environment variables much like you would work with
items in the filesystem or registry providers. By default, PowerShell defines an env:
(much like the c: or d:) that provides access to this information:

PS >dir env:

Name Value
---- -----
Path c:\progra~1\ruby\bin;C:\WINDOWS\system32;C:\
TEMP C:\DOCUME~1\Lee\LOCALS~1\Temp
SESSIONNAME Console
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;
(...)

Since it is a regular PowerShell drive, the full way to get the value of an environment
variable looks like this:

PS >Get-Content Env:\Username
Lee

When it comes to environment variables, though, that is a syntax you will almost
never need to use, because of PowerShell’s support for the Get-Content and Set-
Content variable syntax, which shortens that to:

PS >$env:Username
Lee

This syntax works for all drives but is used most commonly to access environment
variables. For more information about this syntax, see “Recipe 14.2, “Access Infor-
mation About Your Command’s Invocation.”

Some environment variables actually get their values from a combination of two
places: the machinewide settings and the current-user settings. If you want to access
environment variable values specifically configured at the machine or user level, use
the [Environment]::GetEnvironmentVariable() method. For example, if you've
defined a tools directory in your path, you might see:

PS >[Environment]::GetEnvironmentVariable("Path", "User")
d:\lee\tools

To set these machine or user-specific environment variables permanently, use the
[Environment]::SetEnvironmentVariable() method:

[Environment]::SetEnvironmentVariable(<name>, <value>, <target>)

242 | Chapter 14: Environmental Awareness

The Target parameter defines where this variable should be stored: User for the cur-
rent user, and Machine for all users on the machine. For example, to permanently add
your Tools directory to your path:

PS >$oldPersonalPath = [Environment]::GetEnvironmentVariable("Path", "User")
PS >$oldPersonalPath += ";d:\tools"
PS >[Environment]::SetEnvironmentVariable("Path", $oldPersonalPath, "User")

For more information about the Get-Content and Set-Content variable syntax, see
“Variables” in Chapter 3. For more information about the environment provider,
type Get-Help About_Environment.

See Also
• “Variables” in Chapter 3, Variables and Objects

• Recipe 14.2, “Access Information About Your Command’s Invocation”

14.2 Access Information About Your Command’s
Invocation

Problem
You want to learn about how the user invoked your script, function, or script block.

Solution
To access information about how the user invoked your command, use the
$myInvocation variable:

"You invoked this script by typing: " + $myInvocation.Line

Discussion
The $myInvocation variable provides a great deal of information about the current
script, function, or script block—and the context in which it was invoked:

MyCommand
Information about the command (script, function, or script block) itself.

ScriptLineNumber
The line number in the script that called this command.

ScriptName
When in a function or script block, the name of the script that called this
command.

Line
The verbatim text used in the line of script (or command line) that called this
command.

14.2 Access Information About Your Command’s Invocation | 243

InvocationName
The name that the user supplied to invoke this command. This will be different
from the information given by MyCommand if the user has defined an alias for the
command.

PipelineLength
The number of commands in the pipeline that invoked this command.

PipelinePosition
The position of this command in the pipeline that invoked this command.

One important point about working with the $myInvocation variable is that it
changes depending on the type of command from which you call it. If you access this
information from a function, it provides information specific to that function—not
the script from which it was called. Since scripts, functions, and script blocks are
fairly unique, information in the $myInvocation.MyCommand variable changes slightly
between the different command types.

Scripts

Definition and Path
The full path to the currently running script

Name
The name of the currently running script

CommandType
Always ExternalScript

Functions

Definition and ScriptBlock
The source code of the currently running function

Options
The options (None, ReadOnly, Constant, Private, AllScope) that apply to the cur-
rently running function

Name
The name of the currently running function

CommandType
Always Function

Script blocks

Definition and ScriptBlock
The source code of the currently running script block

244 | Chapter 14: Environmental Awareness

Name
Empty

CommandType
Always Script

14.3 Program: Investigate the InvocationInfo Variable
When experimenting with the information available through the $myInvocation vari-
able, it is helpful to see how this information changes between scripts, functions, and
script blocks. For a useful deep dive into the resources provided by the $myInvocation
variable, review the output of Example 14-1.

Example 14-1. Get-InvocationInfo.ps1

##
##
Get-InvocationInfo.ps1
##
Display the information provided by the $myInvocation variable
##
##
param([switch] $preventExpansion)

Define a helper function, so that we can see how $myInvocation changes
when it is called, and when it is dot-sourced
function HelperFunction
{
 " MyInvocation from function:"
 "-"*50
 $myInvocation

 " Command from function:"
 "-"*50
 $myInvocation.MyCommand
}

Define a script block, so that we can see how $myInvocation changes
when it is called, and when it is dot-sourced
$myScriptBlock = {
 " MyInvocation from script block:"
 "-"*50
 $myInvocation

 " Command from script block:"
 "-"*50
 $myInvocation.MyCommand
}

Define a helper alias
Set-Alias gii Get-InvocationInfo

14.3 Program: Investigate the InvocationInfo Variable | 245

Illustrate how $myInvocation.Line returns the entire line that the
user typed.
"You invoked this script by typing: " + $myInvocation.Line

Show the information that $myInvocation returns from a script
"MyInvocation from script:"
"-"*50
$myInvocation

"Command from script:"
"-"*50
$myInvocation.MyCommand

If we were called with the -PreventExpansion switch, don't go
any further
if($preventExpansion)
{
 return
}

Show the information that $myInvocation returns from a function
"Calling HelperFunction"
"-"*50
HelperFunction

Show the information that $myInvocation returns from a dot-sourced
function
"Dot-Sourcing HelperFunction"
"-"*50
. HelperFunction

Show the information that $myInvocation returns from an aliased script
"Calling aliased script"
"-"*50
gii -PreventExpansion

Show the information that $myInvocation returns from a script block
"Calling script block"
"-"*50
& $myScriptBlock

Show the information that $myInvocation returns from a dot-sourced
script block
"Dot-Sourcing script block"
"-"*50
. $myScriptBlock

Show the information that $myInvocation returns from an aliased script
"Calling aliased script"
"-"*50
gii –PreventExpansion

Example 14-1. Get-InvocationInfo.ps1 (continued)

246 | Chapter 14: Environmental Awareness

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

14.4 Find Your Script’s Name

Problem
You want to know the name of the currently running script.

Solution
To determine the full path and filename of the currently executing script, use this
function:

function Get-ScriptName
{
 $myInvocation.ScriptName
}

To determine the name that the user actually typed to invoke your script (for exam-
ple, in a “Usage” message), use the $myInvocation.InvocationName variable.

Discussion
By placing the $myInvocation.ScriptName statement in a function, we drastically sim-
plify the logic it takes to determine the name of the currently running script. If you
don’t want to use a function, you can invoke a script block directly, which also sim-
plifies the logic required to determine the current script’s name:

$scriptName = & { $myInvocation.ScriptName }

Although this is a fairly complex way to get access to the current script’s name, the
alternative is a bit more error-prone. If you are in the body of a script, you can
directly get the name of the current script by typing:

$myInvocation.Path

If you are in a function or script block, though, you must use:

$myInvocation.ScriptName

Working with the $myInvocation.InvocationName variable is sometimes tricky, as it
returns the script name when called directly in the script, but not when called from a
function in that script. If you need this information from a function, pass it to the
function as a parameter.

14.5 Find Your Script’s Location | 247

For more information about working with the $myInvocation variable, see Recipe
14.2, “Access Information About Your Command’s Invocation.”

See Also
• Recipe 14.2, “Access Information About Your Command’s Invocation”

14.5 Find Your Script’s Location

Problem
You want to know the location of the currently running script.

Solution
To determine the location of the currently executing script, use this function:

function Get-ScriptPath
{
 Split-Path $myInvocation.ScriptName
}

Discussion
Once we know the full path to a script, the Split-Path cmdlet makes it easy to deter-
mine its location. Its sibling, the Join-Path cmdlet, makes it easy to form new paths
from their components as well.

By accessing the $myInvocation.ScriptName variable in a function, we drastically sim-
plify the logic it takes to determine the location of the currently running script. For a
discussion about alternatives to using a function for this purpose, see Recipe 14.4,
“Find Your Script’s Name.”

For more information about working with the $myInvocation variable, see Recipe
14.2, “Access Information About Your Command’s Invocation.”

For more information about the Join-Path cmdlet, see Recipe 14.9, “Safely Build File
Paths Out of Their Components.”

See Also
• Recipe 14.2, “Access Information About Your Command’s Invocation”

• Recipe 14.4, “Find Your Script’s Name”

• Recipe 14.9, “Safely Build File Paths Out of Their Components”

248 | Chapter 14: Environmental Awareness

14.6 Find the Location of Common System Paths

Problem
You want to know the location of common system paths and special folders, such as
My Documents and Program Files.

Solution
To determine the location of common system paths and special folders, use the
[Environment]::GetFolderPath() method:

PS >[Environment]::GetFolderPath("System")
C:\WINDOWS\system32

For paths not supported by this method (such as All Users Start Menu), use the
WScript.Shell COM object:

$shell = New-Object -Com WScript.Shell
$allStartMenu = $shell.SpecialFolders.Item("AllUsersStartMenu")

Discussion
The [Environment]::GetFolderPath() method lets you access the many common
locations used in Windows. To use it, provide the short name for the location (such
as System or Personal). Since you probably don’t have all these short names memo-
rized, one way to see all these values is to use the [Enum]::GetValues() method, as
shown in Example 14-2.

Example 14-2. Folders supported by the [Environment]::GetFolderPath() method

PS >[Enum]::GetValues([Environment+SpecialFolder])
Desktop
Programs
Personal
Favorites
Startup
Recent
SendTo
StartMenu
MyMusic
DesktopDirectory
MyComputer
Templates
ApplicationData
LocalApplicationData
InternetCache
Cookies
History
CommonApplicationData

14.6 Find the Location of Common System Paths | 249

Since this is such a common task for all enumerated constants, though, PowerShell
actually provides the possible values in the error message if it is unable to convert
your input:

PS >[Environment]::GetFolderPath("aouaoue")
Cannot convert argument "0", with value: "aouaoue", for "GetFolderPath" to
type "System.Environment+SpecialFolder": "Cannot convert value "aouaoue"
to type "System.Environment+SpecialFolder" due to invalid enumeration values.
Specify one of the following enumeration values and try again. The possible
enumeration values are "Desktop, Programs, Personal, MyDocuments, Favorites,
Startup, Recent, SendTo, StartMenu, MyMusic, DesktopDirectory, MyComputer,
Templates, ApplicationData, LocalApplicationData, InternetCache,
Cookies, History, CommonApplicationData, System, ProgramFiles, MyPictures,
CommonProgramFiles"."
At line:1 char:29
+ [Environment]::GetFolderPath(<<<< "aouaoue")

Although this method provides access to the most-used common system paths, it
does not provide access to all of them. For the paths that the [Environment]::
GetFolderPath() method does not support, use the WScript.Shell COM object. The
WScript.Shell COM object supports the following paths: AllUsersDesktop,
AllUsersStartMenu, AllUsersPrograms, AllUsersStartup, Desktop, Favorites, Fonts,
MyDocuments, NetHood, PrintHood, Programs, Recent, SendTo, StartMenu, Startup, and
Templates.

It would be nice if you could use either the [Environment]::GetFolderPath() method
or the WScript.Shell COM object, but each of them supports a significant number of
paths that the other does not, as Example 14-3 illustrates.

System
ProgramFiles
MyPictures
CommonProgramFiles

Example 14-3. Differences between folders supported by [Environment]::GetFolderPath() and the
Wscript.Shell COM object

PS >$shell = New-Object -Com WScript.Shell
PS >$shellPaths = $shell.SpecialFolders | Sort-Object
PS >
PS >$netFolders = [Enum]::GetValues([Environment+SpecialFolder])
PS >$netPaths = $netFolders |
>> Foreach-Object { [Environment]::GetFolderPath($_) } | Sort-Object
>>
PS >## See the shell-only paths
PS >Compare-Object $shellPaths $netPaths |
>> Where-Object { $_.SideIndicator -eq "<=" }
>>

Example 14-2. Folders supported by the [Environment]::GetFolderPath() method (continued)

250 | Chapter 14: Environmental Awareness

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

14.7 Program: Search the Windows Start Menu
When working at the command line, you might want to launch a program that is
normally found only on your Start menu. While you could certainly click through
the Start menu to find it, you could also search the Start menu with a script, as
shown in Example 14-4.

InputObject SideIndicator
----------- -------------
C:\Documents and Settings\All Users\Desktop <=
C:\Documents and Settings\All Users\Start Menu <=
C:\Documents and Settings\All Users\Start Menu\Programs <=
C:\Documents and Settings\All Users\Start Menu\Programs\... <=
C:\Documents and Settings\Lee\NetHood <=
C:\Documents and Settings\Lee\PrintHood <=
C:\Windows\Fonts <=

PS >## See the .NET-only paths
PS >Compare-Object $shellPaths $netPaths |
>> Where-Object { $_.SideIndicator -eq "=>" }
>>

InputObject SideIndicator
----------- -------------
 =>
C:\Documents and Settings\All Users\Application Data =>
C:\Documents and Settings\Lee\Cookies =>
C:\Documents and Settings\Lee\Local Settings\Application... =>
C:\Documents and Settings\Lee\Local Settings\History =>
C:\Documents and Settings\Lee\Local Settings\Temporary I... =>
C:\Program Files =>
C:\Program Files\Common Files =>
C:\WINDOWS\system32 =>
d:\lee =>
D:\Lee\My Music =>
D:\Lee\My Pictures =>

Example 14-3. Differences between folders supported by [Environment]::GetFolderPath() and the
Wscript.Shell COM object (continued)

14.7 Program: Search the Windows Start Menu | 251

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Example 14-4. Search-StartMenu.ps1

##
##
Search-StartMenu.ps1
##
Search the Start Menu for items that match the provided text. This script
searches both the name (as displayed on the Start Menu itself,) and the
destination of the link.
##
ie:
##
PS >Search-StartMenu "Character Map" | Invoke-Item
PS >Search-StartMenu "network" | Select-FilteredObject | Invoke-Item
##
##

param(
 $pattern = $(throw "Please specify a string to search for.")
)

Get the locations of the start menu paths
$myStartMenu = [Environment]::GetFolderPath("StartMenu")
$shell = New-Object -Com WScript.Shell
$allStartMenu = $shell.SpecialFolders.Item("AllUsersStartMenu")

Escape their search term, so that any regular expression
characters don't affect the search
$escapedMatch = [Regex]::Escape($pattern)

Search for text in the link name
dir $myStartMenu *.lnk -rec | ? { $_.Name -match "$escapedMatch" }
dir $allStartMenu *.lnk -rec | ? { $_.Name -match "$escapedMatch" }

Search for text in the link destination
dir $myStartMenu *.lnk -rec |
 Where-Object { $_ | Select-String "\\[^\\]*$escapedMatch\." -Quiet }
dir $allStartMenu *.lnk -rec |
 Where-Object { $_ | Select-String "\\[^\\]*$escapedMatch\." -Quiet }

252 | Chapter 14: Environmental Awareness

14.8 Get the Current Location

Problem
You want to determine the current location.

Solution
To determine the current location, use the Get-Location cmdlet:

PS >Get-Location

Path

C:\temp
PS >$currentLocation = (Get-Location).Path
PS >$currentLocation
C:\temp

Discussion
One problem that sometimes impacts scripts that work with the .NET Framework is
that PowerShell’s concept of “current location” isn’t always the same as the
PowerShell.exe process’s “current directory.” Take, for example:

PS >Get-Location

Path

C:\temp

PS >Get-Process | Export-CliXml processes.xml
PS >$reader = New-Object Xml.XmlTextReader processes.xml
PS >$reader.BaseURI
file:///C:/Documents and Settings/Lee/processes.xml

PowerShell keeps these concepts separate because it supports multiple pipelines of
execution. The processwide current directory affects the entire process, so you would
risk corrupting the environment of all background tasks as you navigate around the
shell if that changed the process’s current directory.

When you use filenames in most .NET methods, the best practice is to use fully qual-
ified pathnames. The Resolve-Path cmdlet makes this easy:

PS >Get-Location

Path

C:\temp

14.9 Safely Build File Paths Out of Their Components | 253

PS >Get-Process | Export-CliXml processes.xml
PS >$reader = New-Object Xml.XmlTextReader (Resolve-Path processes.xml)
PS >$reader.BaseURI
file:///C:/temp/processes.xml

If you want to access a path that doesn’t already exist, use the Join-Path in combina-
tion with the Get-Location cmdlet:

PS >Join-Path (Get-Location) newfile.txt
C:\temp\newfile.txt

For more information about the Join-Path cmdlet, see the following section Recipe
14.9, “Safely Build File Paths Out of Their Components.”

See Also
• Recipe 14.9, “Safely Build File Paths Out of Their Components”

14.9 Safely Build File Paths Out of Their Components

Problem
You want to build a new path out of a combination of subpaths.

Solution
To join elements of a path together, use the Join-Path cmdlet:

PS >Join-Path (Get-Location) newfile.txt
C:\temp\newfile.txt

Discussion
The usual way to create new paths is by combining strings for each component, plac-
ing a path separator between them:

PS >"$(Get-Location)\newfile.txt"
C:\temp\newfile.txt

Unfortunately, this approach suffers from a handful of problems:

• What if the directory returned by Get-Location already has a slash at the end?

• What if the path contains forward slashes instead of backslashes?

• What if we are talking about registry paths instead of filesystem paths?

Fortunately, the Join-Path cmdlet resolves these issues and more.

For more information about the Join-Path cmdlet, type Get-Help Join-Path.

254 | Chapter 14: Environmental Awareness

14.10 Interact with PowerShell’s Global Environment

Problem
You want to store information in the PowerShell environment so that other scripts
have access to it.

Solution
To make a variable available to the entire PowerShell session, use a $GLOBAL: prefix
when you store information in that variable:

Create the web service cache, if it doesn't already exist
if(-not (Test-Path Variable:\Lee.Holmes.WebServiceCache))
{
 ${GLOBAL:Lee.Holmes.WebServiceCache} = @{}
}

If the main purpose of your script is to provide permanent functions and variables
for its caller, treat that script as a library and have the caller dot-source the script:

PS >. LibraryDirectory
PS >Get-DirectorySize
Directory size: 53,420 bytes

Discussion
The primary guidance when it comes to storing information in the session’s global
environment to avoid it when possible. Scripts that store information in the global
scope are prone to breaking other scripts and prone to being broken by other scripts.

It is a common practice in batch file programming, but script parameters and return
values usually provide a much cleaner alternative.

If you do find yourself needing to write variables to the global scope, make sure that
you create them with a name unique enough to prevent collisions with other scripts,
as illustrated in the solution. Good options for naming prefixes are the script name,
author’s name, or company name.

For more information about setting variables at the global scope (and others), see
Recipe 3.3, “Control Access and Scope of Variables and Other Items.” For more
information about dot-sourcing scripts to create libraries, see also Recipe 10.5,
“Place Common Functions in a Library.”

See Also
• Recipe 3.3, “Control Access and Scope of Variables and Other Items”

• Recipe 10.5, “Place Common Functions in a Library”

255

Chapter 15 CHAPTER 15

Extend the Reach of Windows PowerShell16

15.0 Introduction
The PowerShell environment is phenomenally comprehensive. It provides a great
surface of cmdlets to help you manage your system, a great scripting language to let
you automate those tasks, and direct access to all the utilities and tools you already
know.

The cmdlets, scripting language, and preexisting tools are just part of what makes
PowerShell so comprehensive, however. In addition to these features, PowerShell
provides access to a handful of technologies that drastically increase its capabilities:
the .NET Framework, Windows Management Instrumentation (WMI), COM auto-
mation objects, native Windows API calls, and more.

Not only does PowerShell give you access to these technologies, but it also gives you
access to them in a consistent way. The techniques you use to interact with proper-
ties and methods of PowerShell objects are the same techniques that you use to inter-
act with properties and methods of .NET objects. In turn, those are the same
techniques that you use to work with WMI and COM objects, too.

Working with these techniques and technologies provides another huge benefit—
knowledge that easily transfers to working in .NET programming languages such as
C#.

15.1 Access Windows Management Instrumentation
Data

Problem
You want to work with data and functionality provided by the WMI facilities in
Windows.

256 | Chapter 15: Extend the Reach of Windows PowerShell

Solution
To retrieve all instances of a WMI class, use the Get-WmiObject cmdlet:

Get-WmiObject -ComputerName Computer -Class Win32_Bios

To retrieve specific instances of a WMI class, using a WMI filter, supply an argu-
ment to the –Filter parameter of the Get-WmiObject cmdlet:

Get-WmiObject Win32_Service -Filter "StartMode = 'Auto'"

To retrieve instances of a WMI class using WMI’s WQL language, use the
[WmiSearcher] type shortcut:

$query = [WmiSearcher] "SELECT * FROM Win32_Service WHERE StartMode = 'Auto'"
$query.Get()

To retrieve a specific instance of a WMI class using a WMI filter, use the [Wmi] type
shortcut:

[Wmi] 'Win32_Service.Name="winmgmt"'

To retrieve a property of a WMI instance, access that property as you would access a
.NET property:

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service.StartMode

To invoke a method on a WMI instance, invoke that method as you would invoke a
.NET method:

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service.ChangeStartMode("Manual")
$service.ChangeStartMode("Automatic")

To invoke a method on a WMI class, use the [WmiClass] type shortcut to access that
WMI class. Then, invoke that method as you would invoke a .NET method:

$class = [WmiClass] "Win32_Process"
$class.Create("Notepad")

Discussion
Working with WMI has long been a staple of managing Windows systems—espe-
cially systems that are part of corporate domains or enterprises. WMI supports a
huge amount of Windows management tasks, albeit not in a very user-friendly way.

Traditionally, administrators required either VBScript or the WMIC command-line
tool to access and manage these systems through WMI. While powerful and useful,
these techniques still provided plenty of opportunities for improvement. VBScript
lacks support for an ad hoc investigative approach, and WMIC fails to provide (or
take advantage of) knowledge that applies to anything outside WMIC.

In comparison, PowerShell lets you work with WMI just like you work with the rest of
the shell. WMI instances provide methods and properties, and you work with them the
same way you work with methods and properties of other objects in PowerShell.

15.2 Program: Determine Properties Available to WMI Filters | 257

Not only does PowerShell make working with WMI instances and classes easy once
you have them, but it also provides a clean way to access them in the first place. For
most tasks, you need only to use the simple [Wmi], [WmiClass], or [WmiSearcher] syn-
tax as shown in the solution.

Along with WMI’s huge scope, though, comes a related problem: finding the WMI
class that accomplishes your task. To assist you in learning what WMI classes are
available, Appendix F WMI Reference provides a helpful listing of the most common
ones. For a script that helps you search for WMI classes by name, description, prop-
erty name, or property description, see Recipe 15.3, “Program: Search for WMI
Classes.”

Some advanced WMI tasks require that you enable your security privileges or adjust
the packet privacy settings used in your request. The syntax given by the solution
does not directly support these tasks, but PowerShell still supports these options by
providing access to the underlying objects that represent your WMI query. For
more information about working with these underlying objects, see Recipe 15.4,
“Use .NET to Perform Advanced WMI Tasks.”

When you want to access a specific WMI instance with the [Wmi] accelerator, you
might at first struggle to determine what properties WMI lets you search on. These
properties are called key properties on the class. For a script that lists these key prop-
erties, see the following section Recipe 15.2, “Program: Determine Properties Avail-
able to WMI Filters.”

For more information about the Get-WmiObject cmdlet, type Get-Help Get-WmiObject.

See Also
• Recipe 15.2, “Program: Determine Properties Available to WMI Filters”

• Recipe 15.3, “Program: Search for WMI Classes”

• Recipe 15.4, “Use .NET to Perform Advanced WMI Tasks”

• Appendix F WMI Reference

15.2 Program: Determine Properties Available to WMI
Filters

When you want to access a specific WMI instance with PowerShell’s [Wmi] type
shortcut, you might at first struggle to determine what properties WMI lets you
search on. These properties are called key properties on the class. Example 15-1 gets
all the properties you may use in a WMI filter for a given class.

258 | Chapter 15: Extend the Reach of Windows PowerShell

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

15.3 Program: Search for WMI Classes
Along with WMI’s huge scope comes a related problem: finding the WMI class that
accomplishes your task. To help you learn what WMI classes are available,
Appendix F WMI Reference provides a helpful listing of the most common ones. If
you want to dig a little deeper, though, Example 15-2 lets you search for WMI
classes by name, description, property name, or property description.

Example 15-1. Get-WmiClassKeyProperty.ps1

##
##
Get-WmiClassKeyProperty.ps1
##
Get all of the properties that you may use in a WMI filter for a given class.
##
ie:
##
PS >Get-WmiClassKeyProperty Win32_Process
##
##

param([WmiClass] $wmiClass)

WMI classes have properties
foreach($currentProperty in $wmiClass.PsBase.Properties)
{
 ## WMI properties have qualifiers to explain more about them
 foreach($qualifier in $currentProperty.Qualifiers)
 {
 ## If it has a 'Key' qualifier, then you may use it in a filter
 if($qualifier.Name -eq "Key")
 {
 $currentProperty.Name
 }
 }
}

Example 15-2. Search-WmiNamespace.ps1

##
##
Search-WmiNamespace.ps1
##

15.3 Program: Search for WMI Classes | 259

Search the WMI classes installed on the system for the provided match text.
##
ie:
##
PS >Search-WmiNamespace Registry
PS >Search-WmiNamespace Process ClassName,PropertyName
PS >Search-WmiNamespace CPU -Detailed
##
##

param(
 [string] $pattern = $(throw "Please specify a search pattern."),
 [switch] $detailed,
 [switch] $full,

 ## Supports any or all of the following match options:
 ## ClassName, ClassDescription, PropertyName, PropertyDescription
 [string[]] $matchOptions = ("ClassName","ClassDescription")
)

Helper function to create a new object that represents
a Wmi match from this script
function New-WmiMatch
{
 param($matchType, $className, $propertyName, $line)

 $wmiMatch = New-Object PsObject
 $wmiMatch | Add-Member NoteProperty MatchType $matchType
 $wmiMatch | Add-Member NoteProperty ClassName $className
 $wmiMatch | Add-Member NoteProperty PropertyName $propertyName
 $wmiMatch | Add-Member NoteProperty Line $line

 $wmiMatch
}

If they've specified the -detailed or -full options, update
the match options to provide them an appropriate amount of detail
if($detailed)
{
 $matchOptions = "ClassName","ClassDescription","PropertyName"
}

if($full)
{
 $matchOptions =
 "ClassName","ClassDescription","PropertyName","PropertyDescription"
}

Verify that they specified only valid match options
foreach($matchOption in $matchOptions)
{
 $fullMatchOptions =

Example 15-2. Search-WmiNamespace.ps1 (continued)

260 | Chapter 15: Extend the Reach of Windows PowerShell

 "ClassName","ClassDescription","PropertyName","PropertyDescription"

 if($fullMatchOptions -notcontains $matchOption)
 {
 $error = "Cannot convert value {0} to a match option. " +
 "Specify one of the following values and try again. " +
 "The possible values are ""{1}""."
 $ofs = ", "
 throw ($error -f $matchOption, ([string] $fullMatchOptions))
 }
}

Go through all of the available classes on the computer
foreach($class in Get-WmiObject -List)
{
 ## Provide explicit get options, so that we get back descriptions
 ## as well
 $managementOptions = New-Object System.Management.ObjectGetOptions
 $managementOptions.UseAmendedQualifiers = $true
 $managementClass =
 New-Object Management.ManagementClass $class.Name,$managementOptions

 ## If they want us to match on class names, check if their text
 ## matches the class name
 if($matchOptions -contains "ClassName")
 {
 if($managementClass.Name -match $pattern)
 {
 New-WmiMatch "ClassName" `
 $managementClass.Name $null $managementClass.__PATH
 }
 }

 ## If they want us to match on class descriptions, check if their text
 ## matches the class description
 if($matchOptions -contains "ClassDescription")
 {
 $description =
 $managementClass.PsBase.Qualifiers |
 foreach { if($_.Name -eq "Description") { $_.Value } }
 if($description -match $pattern)
 {
 New-WmiMatch "ClassDescription" `
 $managementClass.Name $null $description
 }
 }

 ## Go through the properties of the class
 foreach($property in $managementClass.PsBase.Properties)
 {

Example 15-2. Search-WmiNamespace.ps1 (continued)

15.4 Use .NET to Perform Advanced WMI Tasks | 261

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Appendix F WMI Reference

15.4 Use .NET to Perform Advanced WMI Tasks

Problem
You want to work with advanced features of WMI, but PowerShell’s access (through
the [Wmi], [WmiClass], and [WmiSearcher] accelerators) does not directly support
them.

Solution
To interact with advanced features through their .NET interface, use the PsBase
property of the resulting objects.

 ## If they want us to match on property names, check if their text
 ## matches the property name
 if($matchOptions -contains "PropertyName")
 {
 if($property.Name -match $pattern)
 {
 New-WmiMatch "PropertyName" `
 $managementClass.Name $property.Name $property.Name
 }
 }

 ## If they want us to match on property descriptions, check if
 ## their text matches the property name
 if($matchOptions -contains "PropertyDescription")
 {
 $propertyDescription =
 $property.Qualifiers |
 foreach { if($_.Name -eq "Description") { $_.Value } }
 if($propertyDescription -match $pattern)
 {
 New-WmiMatch "PropertyDescription" `
 $managementClass.Name $property.Name $propertyDescription
 }
 }
 }
}

Example 15-2. Search-WmiNamespace.ps1 (continued)

262 | Chapter 15: Extend the Reach of Windows PowerShell

Advanced instance features

To get WMI instances related to a given instance, call the GetRelated() method:

$instance = [Wmi] 'Win32_Service.Name="winmgmt"'
$instance.PsBase.GetRelated()

To enable security privileges for a command that requires them (such as changing
the system time), set the EnablePrivileges property to $true:

$system = Get-WmiObject Win32_OperatingSystem
$system.PsBase.Scope.Options.EnablePrivileges = $true
$system.SetDateTime($class.ConvertFromDateTime("01/01/2007"))

Advanced class features

To retrieve the WMI properties and qualifiers of a class, access the PsBase.
Properties property:

$class = [WmiClass] "Win32_Service"
$class.PsBase.Properties

Advanced query feature

To configure connection options, such as Packet Privacy and Authentication, set the
options on the Scope property:

$credential = Get-Credential
$query = [WmiSearcher] "SELECT * FROM IISWebServerSetting"
$query.Scope.Path = "\\REMOTE_COMPUTER\Root\MicrosoftIISV2"
$query.Scope.Options.Username = $credential.Username
$query.Scope.Options.Password = $credential.GetNetworkCredential().Password
$query.Scope.Options.Authentication = "PacketPrivacy"
$query.get() | Select-Object AnonymousUserName

Discussion
The [Wmi], [WmiClass], and [WmiSearcher] type shortcuts return instances of .NET
System.Management.ManagementObject, System.Management.ManagementClass, and
System.Management.ManagementObjectSearcher classes, respectively.

As might be expected, the .NET Framework provides comprehensive support for
WMI queries, with PowerShell providing an easier-to-use interface to that sup-
port. If you need to step outside the support offered directly by PowerShell, these
classes in the .NET Framework provide an advanced outlet.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

15.5 Convert a VBScript WMI Script to PowerShell | 263

15.5 Convert a VBScript WMI Script to PowerShell

Problem
You want to perform a WMI task in PowerShell, but can find only VBScript exam-
ples that demonstrate the solution to the problem.

Solution
To accomplish the task of a script that retrieves data from a computer, use the
Get-WmiObject cmdlet:

foreach($printer in Get-WmiObject –Computer COMPUTER Win32_Printer)
{
 ## Work with the properties
 $printer.Name
}

To accomplish the task of a script that calls methods on an instance, use the [Wmi] or
[WmiSearcher] accelerators to retrieve the instances, and then call methods on the
instances like you would call any other PowerShell method:

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service.ChangeStartMode("Manual")
$service.ChangeStartMode("Automatic")

To accomplish the task of a script that calls methods on a class, use the [WmiClass]
accelerator to retrieve the class, and then call methods on the class like you would
call any other PowerShell method:

$class = [WmiClass] "Win32_Process"
$class.Create("Notepad")

Discussion
For many years, VBScript has been the preferred language that administrators use to
access WMI data. Because of that, the vast majority of scripts available in books and
on the Internet come written in VBScript.

These scripts usually take one of three forms: retrieving data and accessing proper-
ties, calling methods of an instance, and calling methods of a class.

Although most WMI scripts on the Internet accomplish unique tasks,
PowerShell supports many of the traditional WMI tasks natively. If
you want to translate a WMI example to PowerShell, first check that
there aren’t any PowerShell cmdlets that might accomplish the task
directly.

264 | Chapter 15: Extend the Reach of Windows PowerShell

Retrieving data

One of the most common uses of WMI is for data collection and system inventory
tasks. A typical VBScript that retrieves data looks like Example 15-3.

The first three lines prepare a WMI connection to a given computer and namespace.
The next two lines of code prepare a WMI query that requests all instances of a
class. The For Each block loops over all the instances, and the objPrinter.Property
statements interact with properties on those instances.

In PowerShell, the Get-WmiObject cmdlet takes care of most of that, by retrieving all
instances of a class from the computer and namespace that you specify. The first five
lines of code then become:

$installedPrinters = Get-WmiObject Win32_Printer

If you need to specify a different computer, namespace, or query restriction, the Get-
WmiObject cmdlets supports those through optional parameters. If you need to spec-
ify advanced connection options (such as authentication levels), see Recipe 15.4,
“Use .NET to Perform Advanced WMI Tasks.”

In PowerShell, the For Each block becomes:

foreach($printer in $installedPrinters)
{
 $printer.Name
 $printer.Location
 $printer.Default
}

Notice that we spend the bulk of the PowerShell conversion of this script showing
how to access properties. If you don’t actually need to work with the properties (and
only want to display them for reporting purposes), PowerShell’s formatting com-
mands simplify that even further:

Get-WmiObject Win32_Printer | Format-List Name,Location,Default

Example 15-3. Retrieving printer information from WMI using VBScript

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colInstalledPrinters = objWMIService.ExecQuery _
 ("Select * from Win32_Printer")

For Each objPrinter in colInstalledPrinters
 Wscript.Echo "Name: " & objPrinter.Name
 Wscript.Echo "Location: " & objPrinter.Location
 Wscript.Echo "Default: " & objPrinter.Default
Next

15.5 Convert a VBScript WMI Script to PowerShell | 265

For more information about working with the Get-WmiObject cmdlet, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

Calling methods on an instance

Although data retrieval scripts form the bulk of WMI management examples,
another common task is to call methods of an instance that invoke actions.

For example, Example 15-4 changes the startup type of a service.

The first three lines prepare a WMI connection to a given computer and namespace.
The next two lines of code prepare a WMI query that requests all instances of a class
and adds an additional filter (StartMode = 'Manual') to the query. The For Each
block loops over all the instances, and the objService.Change(...) statement calls
the Change() method on the service.

In PowerShell, the Get-WmiObject cmdlet takes care of most of the setup, by retriev-
ing all instances of a class from the computer and namespace that you specify. The
first five lines of code then become:

$services = Get-WmiObject Win32_Service –Filter "StartMode = 'Manual'"

If you need to specify a different computer or namespace, the Get-WmiObject
cmdlets supports those through optional parameters. If you need to specify
advanced connection options (such as authentication levels), see Recipe 15.4, “Use
.NET to Perform Advanced WMI Tasks.”

In PowerShell, the For Each block becomes:

foreach($service in $services)
{
 $service.ChangeStartMode("Disabled")
}

For more information about working with the Get-WmiObject cmdlet, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

Example 15-4. Changing the startup type of a service from WMI using VBScript

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colServiceList = objWMIService.ExecQuery _
 ("Select * from Win32_Service where StartMode = 'Manual'")

For Each objService in colServiceList
 errReturnCode = objService.ChangeStartMode("Disabled")
Next

266 | Chapter 15: Extend the Reach of Windows PowerShell

Calling methods on a class

Although less common than calling methods on an instance, it is sometimes helpful
to call methods on a WMI class. PowerShell makes this work almost exactly like call-
ing methods on an instance.

For example, a script that creates a process on a remote computer looks like this:

strComputer = "COMPUTER"
Set objWMIService = GetObject _
 ("winmgmts:\\" & strComputer & "\root\cimv2:Win32_Process")

objWMIService.Create("notepad.exe")

The first three lines prepare a WMI connection to a given computer and namespace.
The final line calls the Create() method on the class.

In PowerShell, the [WmiClass] accelerator lets you easily access WMI classes. The
first three lines of code then become:

$processClass = [WmiClass] "\\COMPUTER\Root\Cimv2:Win32_Process"

If you need to specify advanced connection options (such as authentication levels), see
Recipe 15.4, “Use .NET to Perform Advanced WMI Tasks.”

In PowerShell, calling the method on the class is nearly identical:

$processClass.Create("notepad.exe")

For more information about working with the [WmiClass] accelerator, see Recipe
15.1, “Access Windows Management Instrumentation Data.”

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

• Recipe 15.4, “Use .NET to Perform Advanced WMI Tasks”

15.6 Automate Programs Using COM Scripting
Interfaces

Problem
You want to automate a program or system task through its COM automation
interface.

Solution
To instantiate and work with COM objects, use the New-Object cmdlet’s –ComObject
parameter.

$shell = New-Object -ComObject "Shell.Application"
$shell.Windows() | Format-Table LocationName,LocationUrl

15.7 Program: Query a SQL Data Source | 267

Discussion
Like WMI, COM automation interfaces have long been a standard tool for scripting
and system administration. When an application exposes management or automa-
tion tasks, COM objects are the second most common interface (right after custom
command-line tools).

PowerShell exposes COM objects like it exposes most other management objects in
the system. Once you have access to a COM object, you work with its properties and
methods in the same way that you work with methods and properties of other
objects in PowerShell.

In addition to automation tasks, many COM objects exist entirely to improve the
scripting experience in languages such as VBScript. One example of this is working
with files, or sorting an array.

One thing to remember when working with these COM objects is that PowerShell
often provides better alternatives to them! In many cases, PowerShell’s cmdlets,
scripting language, or access to the .NET Framework provide the same or similar
functionality to a COM object that you might be used to.

For more information about working with COM objects, see Recipe 3.8, “Use a COM
Object. For a list of the most useful COM objects, see Appendix E Selected .NET
Classes and Their Uses.

See Also
• Recipe 3.8, “Use a COM Object”

• Appendix E Selected .NET Classes and Their Uses

15.7 Program: Query a SQL Data Source
It is often helpful to perform ad hoc queries and commands against a data source
such as a SQL server, Access database, or even an Excel spreadsheet. This is espe-
cially true when you want to take data from one system and put it in another, or
when you want to bring the data into your PowerShell environment for detailed
interactive manipulation or processing.

Although you can directly access each of these data sources in PowerShell (through
its support of the .NET Framework), each data source requires a unique and hard to
remember syntax. Example 15-5 makes working with these SQL-based data sources
both consistent and powerful.

268 | Chapter 15: Extend the Reach of Windows PowerShell

Example 15-5. Invoke-SqlCommand.ps1

##
##
Invoke-SqlCommand.ps1
##
Return the results of a SQL query or operation
##
ie:
##
Use Windows authentication
Invoke-SqlCommand.ps1 -Sql "SELECT TOP 10 * FROM Orders"
##
Use SQL Authentication
$cred = Get-Credential
Invoke-SqlCommand.ps1 -Sql "SELECT TOP 10 * FROM Orders" -Cred $cred
##
Perform an update
$server = "MYSERVER"
$database = "Master"
$sql = "UPDATE Orders SET EmployeeID = 6 WHERE OrderID = 10248"
Invoke-SqlCommand $server $database $sql
##
$sql = "EXEC SalesByCategory 'Beverages'"
Invoke-SqlCommand -Sql $sql
##
Access an access database
Invoke-SqlCommand (Resolve-Path access_test.mdb) -Sql "SELECT * from Users"
##
Access an excel file
Invoke-SqlCommand (Resolve-Path xls_test.xls) -Sql 'SELECT * from [Sheet1$]'
##
##

param(
 [string] $dataSource = ".\SQLEXPRESS",
 [string] $database = "Northwind",
 [string] $sqlCommand = $(throw "Please specify a query."),
 [System.Management.Automation.PsCredential] $credential
)

Prepare the authentication information. By default, we pick
Windows authentication
$authentication = "Integrated Security=SSPI;"

If the user supplies a credential, then they want SQL
authentication
if($credential)
{
 $plainCred = $credential.GetNetworkCredential()
 $authentication =
 ("uid={0};pwd={1};" -f $plainCred.Username,$plainCred.Password)
}

15.7 Program: Query a SQL Data Source | 269

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Prepare the connection string out of the information they
provide
$connectionString = "Provider=sqloledb; " +
 "Data Source=$dataSource; " +
 "Initial Catalog=$database; " +
 "$authentication; "

If they specify an Access database or Excel file as the connection
source, modify the connection string to connect to that data source
if($dataSource -match '\.xls$|\.mdb$')
{
 $connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=$dataSource; "

 if($dataSource -match '\.xls$')
 {
 $connectionString += 'Extended Properties="Excel 8.0;"; '

 ## Generate an error if they didn't specify the sheet name properly
 if($sqlCommand -notmatch '\[.+\$\]')
 {
 $error = 'Sheet names should be surrounded by square brackets, and ' +
 'have a dollar sign at the end: [Sheet1$]'
 Write-Error $error
 return
 }
 }
}

Connect to the data source and open it
$connection = New-Object System.Data.OleDb.OleDbConnection $connectionString
$command = New-Object System.Data.OleDb.OleDbCommand $sqlCommand,$connection
$connection.Open()

Fetch the results, and close the connection
$adapter = New-Object System.Data.OleDb.OleDbDataAdapter $command
$dataset = New-Object System.Data.DataSet
[void] $adapter.Fill($dataSet)
$connection.Close()

Return all of the rows from their query
$dataSet.Tables | Select-Object -Expand Rows

Example 15-5. Invoke-SqlCommand.ps1 (continued)

270 | Chapter 15: Extend the Reach of Windows PowerShell

15.8 Access Windows Performance Counters

Problem
You want to access system performance counter information from PowerShell.

Solution
To retrieve information about a specific performance counter, use the System.
Diagnostics.PerformanceCounter class from the .NET Framework, as shown in
Example 15-6.

Alternatively, WMI’s Win32_Perf* set of classes support many of the most common
performance counters:

Get-WmiObject Win32_PerfFormattedData_Tcpip_NetworkInterface

Discussion
The System.Diagnostics.PerformanceCounter class from the .NET Framework pro-
vides access to the different performance counters you might want to access on a
Windows system. Example 15-6 illustrates working with a performance counter
from a specific category. In addition, the constructor for the PerformanceCounter class
also lets you specify instance names, and even a machine name for the performance
counter you want to retrieve.

The first time you access a performance counter, the NextValue() method returns 0.
At that point, the system begins to sample the performance information and returns
a current value the next time you call the NextValue() method.

Example 15-6. Accessing performance counter data through the System.Diagnostics.
PeformanceCounter class

PS >$arguments = "System","System Up Time"
PS >$counter = New-Object System.Diagnostics.PerformanceCounter $arguments
PS >
PS >[void] $counter.NextValue()
PS >New-Object TimeSpan 0,0,0,$counter.NextValue()

Days : 0
Hours : 18
Minutes : 51
Seconds : 17
Milliseconds : 0
Ticks : 678770000000
TotalDays : 0.785613425925926
TotalHours : 18.8547222222222
TotalMinutes : 1131.28333333333
TotalSeconds : 67877
TotalMilliseconds : 67877000

15.9 Program: Invoke Native Windows API Calls | 271

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

15.9 Program: Invoke Native Windows API Calls
There are times when neither PowerShell’s cmdlets nor scripting language directly
support a feature you need. In most of those situations, PowerShell’s direct support
for the .NET Framework provides another avenue to let you accomplish your task. In
some cases, though, even the .NET Framework does not support a feature you need
to resolve a problem, and the only way to resolve your problem is to access the core
Windows APIs.

For complex API calls (ones that take highly structured data), the solution is to write
a PowerShell cmdlet that uses the P/Invoke (Platform Invoke) support in the .NET
Framework. The P/Invoke support in the .NET Framework lets you access core Win-
dows APIs directly.

Although it is possible to determine these P/Invoke definitions yourself, it is usually
easiest to build on the work of others. If you want to know how to call a specific
Windows API from a .NET language, the http://pinvoke.net web site is the best place
to start.

If the API you need to access is straightforward (one that takes and returns only sim-
ple data types), however, Example 15-7 lets you call these Windows APIs directly
from PowerShell.

For an example of this script in action, see Recipe 17.18, “Program: Create a File-
system Hard Link.”

Example 15-7. Invoke-WindowsApi.ps1

##
##
Invoke-WindowsApi.ps1
##
Invoke a native Windows API call that takes and returns simple data types.
##
ie:
##
Prepare the parameter types and parameters for the
CreateHardLink function
$parameterTypes = [string], [string], [IntPtr]
$parameters = [string] $filename, [string] $existingFilename, [IntPtr]::Zero
##

272 | Chapter 15: Extend the Reach of Windows PowerShell

Call the CreateHardLink method in the Kernel32 DLL
$result = Invoke-WindowsApi "kernel32" ([bool]) "CreateHardLink" `
$parameterTypes $parameters
##
##
param(
 [string] $dllName,
 [Type] $returnType,
 [string] $methodName,
 [Type[]] $parameterTypes,
 [Object[]] $parameters
)

Begin to build the dynamic assembly
$domain = [AppDomain]::CurrentDomain
$name = New-Object Reflection.AssemblyName 'PInvokeAssembly'
$assembly = $domain.DefineDynamicAssembly($name, 'Run')
$module = $assembly.DefineDynamicModule('PInvokeModule')
$type = $module.DefineType('PInvokeType', "Public,BeforeFieldInit")

Go through all of the parameters passed to us. As we do this,
we clone the user's inputs into another array that we will use for
the P/Invoke call.
$inputParameters = @()
$refParameters = @()

for($counter = 1; $counter -le $parameterTypes.Length; $counter++)
{
 ## If an item is a PSReference, then the user
 ## wants an [out] parameter.
 if($parameterTypes[$counter - 1] -eq [Ref])
 {
 ## Remember which parameters are used for [Out] parameters
 $refParameters += $counter

 ## On the cloned array, we replace the PSReference type with the
 ## .Net reference type that represents the value of the PSReference,
 ## and the value with the value held by the PSReference.
 $parameterTypes[$counter - 1] =
 $parameters[$counter - 1].Value.GetType().MakeByRefType()
 $inputParameters += $parameters[$counter - 1].Value
 }
 else
 {
 ## Otherwise, just add their actual parameter to the
 ## input array.
 $inputParameters += $parameters[$counter - 1]
 }
}

Define the actual P/Invoke method, adding the [Out]
attribute for any parameters that were originally [Ref]

Example 15-7. Invoke-WindowsApi.ps1 (continued)

15.10 Program: Add Inline C# to Your PowerShell Script | 273

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 17.18, “Program: Create a Filesystem Hard Link”

15.10 Program: Add Inline C# to Your PowerShell
Script

One of the natural languages to explore after learning PowerShell is C#. It uses
many of the same programming techniques as PowerShell and uses the same classes
and methods in the .NET Framework as PowerShell does, too. In addition, C#
sometimes offers language features or performance benefits not available through
PowerShell.

Rather than having to move to C# completely for these situations, Example 15-8 lets
you write and invoke C# directly in your script.

parameters.
$method = $type.DefineMethod($methodName, 'Public,HideBySig,Static,PinvokeImpl',
 $returnType, $parameterTypes)
foreach($refParameter in $refParameters)
{
 [void] $method.DefineParameter($refParameter, "Out", $null)
}

Apply the P/Invoke constructor
$ctor = [Runtime.InteropServices.DllImportAttribute].GetConstructor([string])
$attr = New-Object Reflection.Emit.CustomAttributeBuilder $ctor, $dllName
$method.SetCustomAttribute($attr)

Create the temporary type, and invoke the method.
$realType = $type.CreateType()

$realType.InvokeMember($methodName, 'Public,Static,InvokeMethod', $null, $null,
 $inputParameters)

Finally, go through all of the reference parameters, and update the
values of the PSReference objects that the user passed in.
foreach($refParameter in $refParameters)
{
 $parameters[$refParameter - 1].Value = $inputParameters[$refParameter - 1]
}

Example 15-7. Invoke-WindowsApi.ps1 (continued)

274 | Chapter 15: Extend the Reach of Windows PowerShell

Example 15-8. Invoke-Inline.ps1

##
Invoke-Inline.ps1
Library support for inline C#
##
Usage
1) Define just the body of a C# method, and store it in a string. "Here
strings" work great for this. The code can be simple:
##
$codeToRun = "Console.WriteLine(Math.Sqrt(337));"
##
or more complex:
##
$codeToRun = @"
string firstArg = (string) ((System.Collections.ArrayList) arg)[0];
int secondArg = (int) ((System.Collections.ArrayList) arg)[1];
##
Console.WriteLine("Hello {0} {1}", firstArg, secondArg);
##
returnValue = secondArg * 3;
"@
##
2) (Optionally) Pack any arguments to your function into a single object.
This single object should be strongly-typed, so that PowerShell does
not treat it as a PsObject.
An ArrayList works great for multiple elements. If you have only one
argument, you can pass it directly.
##
[System.Collections.ArrayList] $arguments =
New-Object System.Collections.ArrayList
[void] $arguments.Add("World")
[void] $arguments.Add(337)
##
3) Invoke the inline code, optionally retrieving the return value. You can
set the return value in your inline code by assigning it to the
"returnValue" variable as shown above.
##
$result = Invoke-Inline $codeToRun $arguments
##
##
If your code is simple enough, you can even do this entirely inline:
##
Invoke-Inline "Console.WriteLine(Math.Pow(337,2));"
##
##
param(
 [string] $code = $(throw "Please specify the code to invoke"),
 [object] $arg,
 [string[]] $reference = @()
)

Stores a cache of generated inline objects. If this library is dot-sourced
from a script, these objects go away when the script exits.

15.10 Program: Add Inline C# to Your PowerShell Script | 275

if(-not (Test-Path Variable:\Lee.Holmes.inlineCache))
{
 ${GLOBAL:Lee.Holmes.inlineCache} = @{}
}

The main function to execute inline C#.
Pass the argument to the function as a strongly-typed variable. They will
be available from C# code as the Object variable, "arg".
Any values assigned to the "returnValue" object by the C# code will be
returned to the caller as a return value.

function main
{
 ## See if the code has already been compiled and cached
 $cachedObject = ${Lee.Holmes.inlineCache}[$code]

 ## The code has not been compiled or cached
 if($cachedObject -eq $null)
 {
 $codeToCompile =
@"
 using System;

 public class InlineRunner
 {
 public Object Invoke(Object arg)
 {
 Object returnValue = null;

 $code

 return returnValue;
 }
 }
"@

 ## Obtains an ICodeCompiler from a CodeDomProvider class.
 $provider = New-Object Microsoft.CSharp.CSharpCodeProvider

 ## Get the location for System.Management.Automation DLL
 $dllName = [PsObject].Assembly.Location

 ## Configure the compiler parameters
 $compilerParameters = New-Object System.CodeDom.Compiler.CompilerParameters

 $assemblies = @("System.dll", $dllName)
 $compilerParameters.ReferencedAssemblies.AddRange($assemblies)
 $compilerParameters.ReferencedAssemblies.AddRange($reference)
 $compilerParameters.IncludeDebugInformation = $true
 $compilerParameters.GenerateInMemory = $true

 ## Invokes compilation.

Example 15-8. Invoke-Inline.ps1 (continued)

276 | Chapter 15: Extend the Reach of Windows PowerShell

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

15.11 Access a .NET SDK Library

Problem
You want to access the functionality exposed by a .NET DLL, but that DLL is pack-
aged as part of a developer-oriented Software Development Kit (SDK).

 $compilerResults =
 $provider.CompileAssemblyFromSource($compilerParameters, $codeToCompile)

 ## Write any errors if generated.
 if($compilerResults.Errors.Count -gt 0)
 {
 $errorLines = "`n$codeToCompile"
 foreach($error in $compilerResults.Errors)
 {
 $errorLines += "`n`t" + $error.Line + ":`t" + $error.ErrorText
 }
 Write-Error $errorLines
 }
 ## There were no errors. Store the resulting object in the object "
 ## cache.
 else
 {
 ${Lee.Holmes.inlineCache}[$code] =
 $compilerResults.CompiledAssembly.CreateInstance("InlineRunner")
 }

 $cachedObject = ${Lee.Holmes.inlineCache}[$code]
 }

 ## Finally invoke the C# code
 if($cachedObject -ne $null)
 {
 return $cachedObject.Invoke($arg)
 }
}

. Main

Example 15-8. Invoke-Inline.ps1 (continued)

15.11 Access a .NET SDK Library | 277

Solution
To create objects contained in a DLL, use the [System.Reflection.Assembly]::
LoadFile() method to load the DLL, and the New-Object cmdlet to create objects
contained in it. Example 15-9 illustrates this technique.

Discussion
While C# and VB.Net developers are usually the consumers of SDKs created for the
.NET Framework, PowerShell lets you access the SDK features just as easily. To do
this, use the [Reflection.Assembly]::LoadFile() method to load the SDK assembly,
and then work with the classes from that assembly as you would work with other
classes in the .NET Framework.

Although PowerShell lets you access developer-oriented SDKs easily, it
can’t change the fact that these SDKs are developer-oriented. SDKs
and programming interfaces are rarely designed with the administra-
tor in mind, so be prepared to work with programming models that
require multiple steps to accomplish your task.

One thing you will notice when working with classes from an SDK is that it quickly
becomes tiresome to specify their fully qualified type names. For example, zip-related
classes from the SharpZipLib all start with ICSharpCode.SharpZipLib.Zip. This is
called the namespace of that class. Most programming languages solve this problem
with a using statement that lets you specify a list of namespaces for that language to
search when you type a plain class name such as ZipEntry. PowerShell lacks a using
statement, but the solution demonstrates one of several ways to get the benefits of
one.

For more information on how to manage these long class names, see Recipe 3.7,
“Reduce Typing for Long Class Names.”

Example 15-9. Interacting with classes from the SharpZipLib SDK DLL

[Reflection.Assembly]::LoadFile("d:\bin\ICSharpCode.SharpZipLib.dll")
$namespace = "ICSharpCode.SharpZipLib.Zip.{0}"

$zipName = Join-Path (Get-Location) "PowerShell_TDG_Scripts.zip"
$zipFile = New-Object ($namespace -f "ZipOutputStream") ([IO.File]::Create($zipName))

foreach($file in dir *.ps1)
{
 $zipEntry = New-Object ($namespace -f "ZipEntry") $file.Name
 $zipFile.PutNextEntry($zipEntry)
}

$zipFile.Close()

278 | Chapter 15: Extend the Reach of Windows PowerShell

Prepackaged SDKs aren’t the only DLLs you can load this way, either. An SDK
library is simply a DLL that somebody wrote, compiled, packaged, and released. If
you are comfortable with any of the .NET languages, you can also create your own
DLL, compile it, and use it exactly the same way.

Take, for example, the simple math library given in Example 15-10. It provides a
static Sum method and an instance Product method.

Example 15-11 demonstrates everything required to get that working in your Power-
Shell system.

Example 15-10. A simple C# math library

namespace MyMathLib
{
 public class Methods
 {
 public Methods()
 {
 }

 public static int Sum(int a, int b)
 {
 return a + b;
 }

 public int Product(int a, int b)
 {
 return a * b;
 }
 }
}

Example 15-11. Compiling, loading, and using a simple C# library

PS >notepad MyMathLib.cs
<add the above code to MyMathLib.cs>

PS >Set-Alias csc $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\csc.exe
PS >csc /target:library MyMathLib.cs

Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.42
for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.

PS >[Reflection.Assembly]::LoadFile("c:\temp\MyMathLib.dll")

GAC Version Location
--- ------- --------
False v2.0.50727 c:\temp\MyMathLib.dll

PS >[MyMathLib.Methods]::Sum(10, 2)
12

15.12 Create Your Own PowerShell Cmdlet | 279

For more information about working with classes from the .NET Framework, see
Recipe 3.5, “Create an Instance of a .NET Object.”

See Also
• Recipe 3.5, “Create an Instance of a .NET Object”

• Recipe 3.7, “Reduce Typing for Long Class Names”

15.12 Create Your Own PowerShell Cmdlet

Problem
You want to write your own PowerShell cmdlet.

Discussion
As mentioned previously in “Structured Commands (Cmdlets)” in A Guided Tour of
Windows PowerShell, PowerShell cmdlets offer several significant advantages over
traditional executable programs. From the user’s perspective, cmdlets are incredibly
consistent—and their support for strongly typed objects as input makes them power-
ful. From the cmdlet author’s perspective, cmdlets are incredibly easy to write when
compared to the amount of power they provide. Creating and exposing a new com-
mand-line parameter is as easy as creating a new public property on a class. Support-
ing a rich pipeline model is as easy as placing your implementation logic into one of
three standard method overrides.

While a full discussion on how to implement a cmdlet is outside the scope of this
book, the following steps illustrate the process behind implementing a simple
cmdlet.

For more information on how to write a PowerShell cmdlet, see the MSDN topic,
“How to Create a Windows PowerShell Cmdlet,” available at http://msdn2.microsoft.
com/en-us/library/ms714598.aspx.

Step 1: Download the Windows SDK

The Windows SDK contains samples, tools, reference assemblies, templates, docu-
mentation, and other information used when developing PowerShell cmdlets. It is
available by searching for “Microsoft Windows SDK” on http://download.microsoft.
com and downloading the latest Windows Vista SDK.

PS >$mathInstance = New-Object MyMathLib.Methods
PS >$mathInstance.Product(10, 2)
20

Example 15-11. Compiling, loading, and using a simple C# library (continued)

280 | Chapter 15: Extend the Reach of Windows PowerShell

Step 2: Create a file to hold the cmdlet and snapin source code

Create a file called InvokeTemplateCmdletCommand.cs with the content from
Example 15-12 and save it on your hard drive.

Example 15-12. InvokeTemplateCmdletCommand.cs

using System;
using System.ComponentModel;
using System.Management.Automation;

/*
To build and install:

1)
Set-Alias csc $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\csc.exe

2)
Set-Alias installutil `
 $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\installutil.exe
3)
$ref = [PsObject].Assembly.Location
csc /out:TemplateSnapin.dll /t:library InvokeTemplateCmdletCommand.cs /r:$ref

4)
installutil TemplateSnapin.dll

5)
Add-PSSnapin TemplateSnapin

To run:

PS >Invoke-TemplateCmdlet

To uninstall:

installutil /u TemplateSnapin.dll

*/

namespace Template.Commands
{
 [Cmdlet("Invoke", "TemplateCmdlet")]
 public class InvokeTemplateCmdletCommand : Cmdlet
 {
 [Parameter(Mandatory=true, Position=0, ValueFromPipeline=true)]
 public string Text
 {
 get
 {
 return text;
 }

15.12 Create Your Own PowerShell Cmdlet | 281

 set
 {
 text = value;
 }
 }
 private string text;

 protected override void BeginProcessing()
 {
 WriteObject("Processing Started");
 }

 protected override void ProcessRecord()
 {
 WriteObject("Processing " + text);
 }

 protected override void EndProcessing()
 {
 WriteObject("Processing Complete.");
 }
 }

 [RunInstaller(true)]
 public class TemplateSnapin : PSSnapIn
 {
 public TemplateSnapin()
 : base()
 {
 }

 ///<summary>The snapin name which is used for registration</summary>
 public override string Name
 {
 get
 {
 return "TemplateSnapin";
 }
 }
 /// <summary>Gets vendor of the snapin.</summary>
 public override string Vendor
 {
 get
 {
 return "Template Vendor";
 }
 }
 /// <summary>Gets description of the snapin. </summary>
 public override string Description

Example 15-12. InvokeTemplateCmdletCommand.cs (continued)

282 | Chapter 15: Extend the Reach of Windows PowerShell

Step 3: Compile the snapin

A PowerShell cmdlet is a simple .NET class. The DLL that contains the compiled
cmdlet is called a snapin.

Set-Alias csc $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\csc.exe
$ref = [PsObject].Assembly.Location
csc /out:TemplateSnapin.dll /t:library InvokeTemplateCmdletCommand.cs /r:$ref

Step 4: Install and register the snapin

Once you have compiled the snapin, the next step is to register it. Registering a
snapin gives PowerShell the information it needs to let you use it. This command
requires administrative permissions.

Set-Alias installutil `
 $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\installutil.exe
installutil TemplateSnapin.dll

Step 5: Add the snapin to your session

Although step 4 registered the snapin, PowerShell doesn't add the commands to your
active session until you call the Add-PsSnapin cmdlet.

Add-PsSnapin TemplateSnapin

Step 6: Use the snapin

Once you've added the snapin to your session, you can call commands from that
snapin as though you would call any other cmdlet.

PS >"Hello World" | Invoke-TemplateCmdlet
Processing Started
Processing Hello World
Processing Complete.

 {
 get
 {
 return "This is a snapin that provides a template cmdlet.";
 }
 }
 }
}

Example 15-12. InvokeTemplateCmdletCommand.cs (continued)

15.13 Add PowerShell Scripting to Your Own Program | 283

15.13 Add PowerShell Scripting to Your Own Program

Problem
You want to provide your users with an easy way to automate your program, but
don’t want to write a scripting language on your own.

Discussion
One of the fascinating aspects of PowerShell is how easily it lets you add many of its
capabilities to your own program. This is because PowerShell is, at its core, a power-
ful engine that any application can use. The PowerShell console application is in fact
just a text-based interface to this engine.

While a full discussion of the PowerShell hosting model is outside the scope of this
book, the following example illustrates the techniques behind exposing features of
your application for your users to script.

To frame Example 15-13, imagine an email application that lets you run rules when
it receives an email. While you will want to design a standard interface that allows
users to create simple rules, you will also want to provide a way for users to write
incredibly complex rules. Rather than design a scripting language yourself, you can
simply use PowerShell’s scripting language. In the following example, we provide
user-written scripts with a variable called $message that represents the current mes-
sage and then runs their commands.

PS >Get-Content VerifyCategoryRule.ps1
if($message.Body -match "book")
{
 [Console]::WriteLine("This is a message about the book.")
}
else
{
 [Console]::WriteLine("This is an unknown message.")
}
PS >.\RulesWizardExample.exe (Resolve-Path VerifyCategoryRule.ps1)
This is a message about the book.

For more information on how to host PowerShell in your own application, see the
MSDN topic, “How to Create a Windows PowerShell Hosting Application,” avail-
able at http://msdn2.microsoft.com/en-us/library/ms714661.aspx.

Step 1: Download the Windows SDK

The Windows SDK contains samples, tools, reference assemblies, templates, documen-
tation, and other information used when developing PowerShell cmdlets. It is available
by searching for “Microsoft Windows SDK” on http://download.microsoft.com.

284 | Chapter 15: Extend the Reach of Windows PowerShell

Step 2: Create a file to hold the hosting source code

Create a file called RulesWizardExample.cs with the content from Example 15-13, and
save it on your hard drive.

Example 15-13. RulesWizardExample.cs

using System;
using System.Management.Automation;
using System.Management.Automation.Runspaces;

namespace Template
{
 // Define a simple class that represents a mail message
 public class MailMessage
 {
 public MailMessage(string to, string from, string body)
 {
 this.To = to;
 this.From = from;
 this.Body = body;
 }

 public String To;
 public String From;
 public String Body;
 }

 public class RulesWizardExample
 {
 public static void Main(string[] args)
 {
 // Ensure that they've provided some script text
 if(args.Length == 0)
 {
 Console.WriteLine("Usage:");
 Console.WriteLine(" RulesWizardExample <script text>");
 return;
 }

 // Create an example message to pass to our rules wizard
 MailMessage mailMessage =
 new MailMessage(
 "guide_feedback@LeeHolmes.com",
 "guide_reader@example.com",
 "This is a message about your book.");

 // Create a runspace, which is the environment for
 // running commands
 Runspace runspace = RunspaceFactory.CreateRunspace();
 runspace.Open();

 // Create a variable, called "$message" in the Runspace, and populate
 // it with a reference to the current message in our application.

15.13 Add PowerShell Scripting to Your Own Program | 285

Step 3: Compile and run the example

Although the example itself provides very little functionality, it demonstrates the
core concepts behind adding PowerShell scripting to your own program.

Set-Alias csc $env:WINDIR\Microsoft.NET\Framework\v2.0.50727\csc.exe
$dll = [PsObject].Assembly.Location
Csc RulesWizardExample.cs /reference:$dll
RulesWizardExample.exe <script commands to run>

For example,

PS >.\RulesWizardExample.exe '[Console]::WriteLine($message.From)'
guide_reader@example.com

See Also
• “Structured Commands (Cmdlets)” in A Guided Tour of Windows PowerShell

 // Pipeline commands can interact with this object like any other
 // .Net object.
 runspace.SessionStateProxy.SetVariable("message", mailMessage);

 // Create a pipeline, and populate it with the script given in the
 // first command line argument.
 Pipeline pipeline = runspace.CreatePipeline(args[0]);

 // Invoke (execute) the pipeline, and close the runspace.
 pipeline.Invoke();
 runspace.Close();
 }
 }
}

Example 15-13. RulesWizardExample.cs (continued)

286

Chapter 16CHAPTER 16

Security and Script Signing 17

16.0 Introduction
Security plays two important roles in PowerShell. The first role is the security of
PowerShell itself: scripting languages have long been a vehicle of email-based mal-
ware on Windows, so PowerShell’s security features have been carefully designed to
thwart this danger. The second role is the set of security-related tasks you are likely
to encounter when working with your computer: script signing, certificates, and cre-
dentials, just to name a few.

When it comes to talking about security in the scripting and command-line world, a
great deal of folklore and superstition clouds the picture. One of the most common
misconceptions is that that scripting languages and command-line shells somehow
lets users bypass the security protections of the Windows graphical user interface.

The Windows security model (as with any security model that actually provides
security) protects resources—not the way you get to them. That is because programs
that you run, in effect, are you. If you can do it, so can a program. If a program can
do it, then you can do it without having to use that program. For example, consider
the act of changing critical data in the Windows Registry. If you use the Windows
Registry Editor graphical user interface, it provides an error message when you
attempt to perform an operation that you do not have permission for, as shown in
Figure 16-1.

The Registry Editor provides this error message because it is unable to delete that
key, not because it wanted to prevent you from doing it. Windows itself protects the
registry keys, not the programs you use to access them.

Likewise, PowerShell provides an error message when you attempt to perform an
operation that you do not have permission for. Not because PowerShell contains

16.1 Enable Scripting Through an Execution Policy | 287

extra security checks for that operation, but because it is also simply unable to per-
form the operation:

PS >New-Item "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run\New"
New-Item : Requested registry access is not allowed.
At line:1 char:9
+ New-Item <<<< "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run\New"

While perhaps clear after explanation, this misunderstanding often gets used as a rea-
son to prevent users from running command shells or scripting languages altogether.

16.1 Enable Scripting Through an Execution Policy

Problem
PowerShell provides an error message when you try to run a script:

PS>.\Test.ps1
File C:\temp\test.ps1 cannot be loaded because the execution of scripts is disa
bled on this system. Please see "get-help about_signing" for more details.
At line:1 char:10
+ .\Test.ps1 <<<<

Solution
To prevent this error message, use the Set-ExecutionPolicy cmdlet to change the
PowerShell execution policy to one of the policies that allow scripts to run:

Set-ExecutionPolicy RemoteSigned

Figure 16-1. Error message from the Windows Registry Editor

288 | Chapter 16: Security and Script Signing

Discussion
As normally configured, PowerShell operates strictly as an interactive shell. By dis-
abling the execution of scripts by default, PowerShell prevents malicious PowerShell
scripts from affecting users who have PowerShell installed, but who may never have
used (or even heard of!) PowerShell.

You (as a reader of this book) are not part of that target audience, however, so you
will want to configure PowerShell to run under one of the following four execution
policies:

Restricted
PowerShell operates as an interactive shell only. Attempting to run a script gen-
erates an error message. This is PowerShell’s default execution policy.

AllSigned
PowerShell only runs scripts that contain a digital signature. When you attempt
to run a script signed by a publisher that PowerShell hasn’t seen before, Power-
Shell asks whether you trust that publisher to run scripts on your system.

RemoteSigned (recommended)
PowerShell runs most scripts without prompting, but requires that scripts that
originate from the Internet contain a digital signature. As in AllSigned mode,
PowerShell asks whether you trust that publisher to run scripts on your system
when you run a script signed by a publisher it hasn’t seen before. PowerShell
considers a script to have come from the Internet when it has been downloaded
to your computer by a popular communications programs such as Internet
Explorer, Outlook, or Messenger.

Unrestricted
PowerShell does not require a digital signature on any script, but (like Windows
Explorer) warns you when a script originates from the Internet.

Run the Set-ExecutionPolicy cmdlet as an administrator to configure the system’s
execution policy. If you want to configure your execution policy on Windows Vista,
right-click the Windows PowerShell link for the option to launch PowerShell as
Administrator.

Just because a script is signed, it does not mean that the script is safe!
The signature on a script gives you a way to verify who the script came
from, but not that you can trust its author to run commands on your
system. You need to make that decision for yourself, which is why
PowerShell asks you.

Alternatively, you may directly modify the registry key that PowerShell uses to store
its execution policy. This is the ExecutionPolicy property under the registry path
HKLM\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell.

16.2 Sign a PowerShell Script or Formatting File | 289

In an enterprise setting, PowerShell also lets you override this local preference
through Group Policy. For more information about PowerShell’s Group Policy sup-
port, see Recipe 16.4, “Manage PowerShell Security in an Enterprise.”

When using an execution policy that detects Internet-based scripts, you may want to
stop PowerShell from treating those scripts as remote. To do that, right-click on the
file from Windows Explorer, select Properties, and then click Unblock.

In an enterprise setting, PowerShell sometimes warns of the dangers of Internet-
based scripts even if they are located only on a network share. If unblocking the file
does not resolve the issue, your machine has likely been configured to restrict access
to network shares. This is common with Internet Explorer’s Enhanced Security
Configuration mode. To prevent this message, add the path of the network share to
Internet Explorer’s Intranet or Trusted Sites zone. For more information on manag-
ing Internet Explorer’s zone mappings, see Recipe 18.6, “Add a Site to an Internet
Explorer Security Zone.”

For more information about script signing in PowerShell, type Get-Help about_
signing. For more information about the Set-ExecutionPolicy cmdlet, type Get-Help
Set-ExecutionPolicy.

See Also
• Recipe 16.4, “Manage PowerShell Security in an Enterprise”

• Recipe 18.6, “Add a Site to an Internet Explorer Security Zone”

16.2 Sign a PowerShell Script or Formatting File

Problem
You want to sign a PowerShell script so that it may be run on systems that have their
execution policy set to require signed scripts.

Solution
To sign the script with your standard code-signing certificate, use the Set-
AuthenticodeSignature cmdlet:

$cert = @(Get-ChildItem cert:\CurrentUser\My -CodeSigning)[0]
Set-AuthenticodeSignature file.ps1 $cert

Alternatively, you may also use other traditional applications (such as signtool.exe)
to sign PowerShell .ps1 and .ps1xml files.

290 | Chapter 16: Security and Script Signing

Discussion
Signing a script or formatting file provides you and your customers with two pri-
mary benefits: publisher identification and file integrity. When you sign a script or
formatting file, PowerShell appends your digital signature to the end of that file. This
signature verifies that the file came from you and also ensures that nobody can
tamper with the content in the file without detection. If you try to load a file that has
been tampered with, PowerShell provides the following error message:

File C:\temp\test.ps1 cannot be loaded. The contents of file C:\temp\test.ps1
may have been tampered because the hash of the file does not match the hash
stored in the digital signature. The script will not execute on the system. Please
see "get-help about_signing" for more details..
At line:1 char:10
+ .\test.ps1 <<<<

When it comes to the signing of scripts and formatting files, PowerShell participates
in the standard Windows Authenticode infrastructure. Because of that, techniques
you may already know for signing files and working with their signatures continue to
work with PowerShell scripts and formatting files. While the Set-
AuthenticodeSignature cmdlet is primarily designed to support scripts and format-
ting files, it also supports DLLs and other standard Windows executable file types.

To sign a file, the Set-AuthenticodeSignature cmdlet requires that you provide it
with a valid code-signing certificate. Most certification authorities provide Authenti-
code code-signing certificates for a fee. By using an Authenticode code-signing certif-
icate from a reputable certification authority (such as VeriSign or Thawte), you can
be sure that all users will be able to verify the signature on your script. Some online
services offer extremely cheap code-signing certificates, but be aware that many
machines may be unable to verify the digital signatures created by those certificates.

You can still gain many of the benefits of code signing on your own
computers by generating your own code-signing certificate. While
other computers will not be able to recognize the signature, it still pro-
vides tamper-protection on your own computer. For more informa-
tion about this approach, see the following section Recipe 16.3,
“Program: Create a Self-Signed Certificate.”

The –TimeStampServer parameter lets you sign your script or formatting file in a way
that makes the signature on your script or formatting file valid even after your code-
signing certificate expires.

For more information about the Set-AuthenticodeSignature cmdlet, type Get-Help
Set-AuthenticodeSignature.

See Also
• Recipe 16.3, “Program: Create a Self-Signed Certificate”

16.3 Program: Create a Self-Signed Certificate | 291

16.3 Program: Create a Self-Signed Certificate

Discussion
It is possible to benefit from the tamper-protection features of signed scripts without
having to pay for an official code-signing certificate. You do this by creating a self-
signed certificate. Scripts signed with a self-signed certificate will not be recognized as
valid on other computers, but still lets you sign scripts on your own computer.

When Example 16-1 runs, it prompts you for a password. Windows uses this pass-
word to prevent malicious programs from automatically signing files on your behalf.

Example 16-1. New-SelfSignedCertificate.ps1

##
##
New-SelfSignedCertificate.ps1
##
Generate a new self-signed certificate. The certificate generated by these
commands allow you to sign scripts on your own computer for protection
from tampering. Files signed with this signature are not valid on other
computers.
##
ie:
##
PS >New-SelfSignedCertificate.ps1
##
##

if(-not (Get-Command makecert.exe -ErrorAction SilentlyContinue))
{
 $errorMessage = "Could not find makecert.exe. " +
 "This tool is available as part of Visual Studio, or the Windows SDK."

 Write-Error $errorMessage
 return
}

$keyPath = Join-Path ([IO.Path]::GetTempPath()) "root.pvk"

Generate the local certification authority
makecert -n "CN=PowerShell Local Certificate Root" -a sha1 `
 -eku 1.3.6.1.5.5.7.3.3 -r -sv $keyPath root.cer `
 -ss Root -sr localMachine

Use the local certification authority to generate a self-signed
certificate
makecert -pe -n "CN=PowerShell User" -ss MY -a sha1 `
 -eku 1.3.6.1.5.5.7.3.3 -iv $keyPath -ic root.cer

Remove the private key from the filesystem.
Remove-Item $keyPath

292 | Chapter 16: Security and Script Signing

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

16.4 Manage PowerShell Security in an Enterprise

Problem
You want to control PowerShell’s security features in an enterprise setting.

Solution
To manage PowerShell’s security features enterprisewide:

• Apply PowerShell’s Group Policy templates to control PowerShell’s execution
policy through Group Policy.

• Deploy Microsoft Certificate Services to automatically generate Authenticode
code-signing certificates for domain accounts.

• Apply software restriction policies to prevent PowerShell from trusting specific
script publishers.

Discussion

Apply PowerShell’s Group Policy templates

The administrative templates for Windows PowerShell let you override the
machine’s local execution policy preference at both the machine and per-user level.
To obtain the PowerShell administrative templates, visit http://www.microsoft.com/
downloads and search for “Administrative templates for Windows PowerShell.”

Although Group Policy settings override local preferences, Power-
Shell’s execution policy should not be considered a security measure
that protects the system from the user. It is a security measure that
helps prevent untrusted scripts from running on the system. As men-
tioned in the introduction, PowerShell is only a vehicle that allows
users to do what they already have the Windows permissions to do.

Retrieve the certificate
Get-ChildItem cert:\currentuser\my -codesign |
 Where-Object { $_.Subject -match "PowerShell User" }

Example 16-1. New-SelfSignedCertificate.ps1 (continued)

16.4 Manage PowerShell Security in an Enterprise | 293

Once you install the administrative templates for Windows PowerShell, launch the
Group Policy Object Editor MMC snapin. Right-click Administrative Templates and
then select Add/Remove Administrative Templates. You will find the administrative
template in the installation location you chose when you installed the administrative
templates for Windows PowerShell. Once added, the Group Policy Editor MMC
snapin provides PowerShell as option under its Administrative Templates node, as
shown in Figure 16-2.

The default state is Not Configured. In this state, PowerShell takes its execution pol-
icy from the machine’s local preference (as described in Recipe 16.1, “Enable Script-
ing Through an Execution Policy”). If you change the state to one of the Enabled
options (or Disabled), PowerShell uses this configuration instead of the machine’s
local preference.

PowerShell respects these Group Policy settings no matter what. This
includes settings that the machine’s administrator may consider to
reduce security—such as an Unrestricted group policy overriding an
AllSigned local preference.

Per-user Group Policy settings override the machine’s local preference, while per-
machine Group Policy settings override per-user settings.

Deploy Microsoft Certificate services

Although outside the scope of this book, Microsoft Certificate Services lets you
automatically deploy code-signing certificates to any or all domain users. This pro-
vides a significant benefit, as it helps protect users from accidental or malicious
script tampering.

For an introduction to this topic, visit http://technet.microsoft.com and search for
“Enterprise Design for Certificate Services.” For more information about script sign-
ing, see Recipe 16.2, “Sign a PowerShell Script or Formatting File.”

Figure 16-2. PowerShell Group Policy configuration

294 | Chapter 16: Security and Script Signing

Apply software restriction policies

While not common, you may sometimes want to prevent PowerShell from running
scripts signed by specific publishers. If the script would normally be subject to signa-
ture verification (for example, it is a remote script, or PowerShell’s execution policy
is set to AllSigned), PowerShell lets you configure this through certificate rules in the
computer’s software restriction policies.

PowerShell does not support software restriction policy path rules.

To configure these certificate rules, launch the Local Security Policy MMC snapin
listed in the Administrative Tools group of the Start menu. Expand the Software
Restriction Policies node, right-click Additional Rules, and then select New Certifi-
cate Rule, as shown in Figure 16-3.

Figure 16-3. Adding a new certificate rule

16.5 Verify the Digital Signature of a PowerShell Script | 295

Browse to the certificate that represents the publisher you want to block, and then
click OK to block that publisher.

You can also create certificate policy that allows only certificates from a centrally
administered whitelist. To do this, select either Allow only all administrators to man-
age Trusted Publishers or Allow only enterprise administrators to manage Trusted Pub-
lishers from the Trusted Publishers Management dialog.

See Also
• Recipe 16.1, “Enable Scripting Through an Execution Policy”

• Recipe 16.2, “Sign a PowerShell Script or Formatting File”

16.5 Verify the Digital Signature of a PowerShell
Script

Problem
You want to verify the digital signature of a PowerShell script or formatting file.

Solution
To validate the signature of a script or formatting file, use the Get-
AuthenticodeSignature cmdlet:

PS >Get-AuthenticodeSignature .\test.ps1

 Directory: C:\temp

SignerCertificate Status Path
----------------- ------ ----
FD48FAA9281A657DBD089B5A008FAFE61D3B32FD Valid test.ps1

Discussion
The Get-AuthenticodeSignature cmdlet gets the Authenticode signature from a file.
This can be a PowerShell script or formatting file, but the cmdlet also supports DLLs
and other Windows standard executable file types.

By default, PowerShell displays the signature in a format that summarizes the certifi-
cate and its status. For more information about the signature, use the Format-List
cmdlet, as shown in Example 16-2.

296 | Chapter 16: Security and Script Signing

For more information about the Get-AuthenticodeSignature cmdlet, type Get-Help
Get-AuthenticodeSignature.

16.6 Securely Handle Sensitive Information

Problem
You want to request sensitive information from the user, but want to do this as
securely as possible.

Solution
To securely handle sensitive information, store it in a SecureString whenever possi-
ble. The Read-Host cmdlet (with the –AsSecureString parameter) lets you prompt the
user for (and handle) sensitive information by returning the user’s response as a
SecureString:

PS >$secureInput = Read-Host -AsSecureString "Enter your private key"
Enter your private key: *******************
PS >$secureInput
System.Security.SecureString

Example 16-2. PowerShell displaying detailed information about an Authenticode signature

PS >Get-AuthenticodeSignature .\test.ps1 | Format-List

SignerCertificate : [Subject]
 CN=PowerShell User

 [Issuer]
 CN=PowerShell Local Certificate Root

 [Serial Number]
 454D75B8A18FBDB445D8FCEC4942085C

 [Not Before]
 4/22/2007 12:32:37 AM

 [Not After]
 12/31/2039 3:59:59 PM

 [Thumbprint]
 FD48FAA9281A657DBD089B5A008FAFE61D3B32FD

TimeStamperCertificate :
Status : Valid
StatusMessage : Signature verified.
Path : C:\temp\test.ps1

16.6 Securely Handle Sensitive Information | 297

Discussion
When you use any string in the .NET Framework (and therefore PowerShell), it
retains that string so that it can efficiently reuse it later. Unlike most .NET data,
unused strings persist even after you finish using them. When this data is in mem-
ory, there is always the chance that it could get captured in a crash dump, or
swapped to disk in a paging operation. Because some data (such as passwords and
other confidential information) may be sensitive, the .NET Framework includes the
SecureString class—a container for text data that the framework encrypts when it
stores it in memory. Code that needs to interact with the plain-text data inside a
SecureString does so as securely as possible.

When a cmdlet author asks you for sensitive data (for example, an encryption key),
the best practice is to designate that parameter as a SecureString to help keep your
information confidential. You can provide the parameter with a SecureString vari-
able as input, or the host prompts you for the SecureString if you do not provide
one. PowerShell also supports two cmdlets (ConvertTo-SecureString and
ConvertFrom-SecureString) that allow you to securely persist this data to disk. For
more information about securely storing information on disk, see Recipe 16.9,
“Securely Store Credentials on Disk.”

Credentials are a common source of sensitive information. See Recipe
16.7, “Securely Request Usernames and Passwords,” for information
on how to securely manage credentials in PowerShell.

By default, the SecureString cmdlets use Windows’ data protection API when they
convert your SecureString to and from its text representation. The key it uses to
encrypt your data is based on your Windows logon credentials, so only you can
decrypt the data that you’ve encrypted. If you want the exported data to work on
another system or separate user account, you can use the cmdlet options that let you
provide an explicit key. PowerShell treats this sensitive data as an opaque blob—and
so should you.

However, there are many instances when you may want to automatically provide the
SecureString input to a cmdlet rather than have the host prompt you for it. In these
situations, the ideal solution is to use the ConvertTo-SecureString cmdlet to import a
previously exported SecureString from disk. This retains the confidentiality of your
data and still lets you automate the input.

If the data is highly dynamic (for example, coming from a CSV), then the ConvertTo-
SecureString cmdlet supports an –AsPlainText parameter:

$secureString = ConvertTo-SecureString "Kinda Secret" -AsPlainText –Force

Since you’ve already provided plain-text input in this case, placing this data in a
SecureString no longer provides a security benefit. To prevent a false sense of security,
the cmdlet requires the -Force parameter to convert plain-text data into a SecureString.

298 | Chapter 16: Security and Script Signing

Once you have data in a SecureString, you may want to access its plain-text repre-
sentation. PowerShell doest’t provide a direct way to do this, as that defeats the pur-
pose of a SecureString. If you still want to convert a SecureString to plain text, you
have two options:

1. Use the GetNetworkCredential() method of the PsCredential class
$secureString = Read-Host -AsSecureString
$temporaryCredential = New-Object `
 System.Management.Automation.PsCredential "TempUser",$secureString
$unsecureString = $temporaryCredential.GetNetworkCredential().Password

2. Use the .NET Framework’s Marshal class
$secureString = Read-Host -AsSecureString
$unsecureString = [Runtime.InteropServices.Marshal]::PtrToStringAuto(
 [Runtime.InteropServices.Marshal]::SecureStringToBSTR($secureString))

See Also
• Recipe 16.7, “Securely Request Usernames and Passwords”

• Recipe 16.9, “Securely Store Credentials on Disk”

16.7 Securely Request Usernames and Passwords

Problem
Your script requires that users provide it with a username and password, but you
want to do this as securely as possible.

Solution
To request a credential from the user, use the Get-Credential cmdlet:

$credential = Get-Credential

Discussion
The Get-Credential cmdlet reads credentials from the user as securely as possible
and ensures that the user’s password remains highly protected the entire time. For an
example of using the Get-Credential cmdlet effectively in a script, see the following
section, Recipe 16.8, “Program: Start a Process As Another User.”

Once you have the username and password, you can pass that information around to
any other command that accepts a PowerShell credential object without worrying
about disclosing sensitive information. If a command doesn’t accept a PowerShell
credential object (but does support a SecureString for its sensitive information), the
resulting PsCredential object provides a Username property that returns the user-
name in the credential and a Password property that returns a SecureString contain-
ing the user’s password.

16.7 Securely Request Usernames and Passwords | 299

Unfortunately, not everything that requires credentials can accept either a Power-
Shell credential or SecureString. If you need to provide a credential to one of these
commands or API calls, the PsCredential object provides a GetNetworkCredential()
method to convert the PowerShell credential to a less secure NetworkCredential
object. Once you've converted the credential to a NetworkCredential, the UserName
and Password properties provide unencrypted access to the username and password
from the original credential. Many network-related classes in the .NET Framework
support the NetworkCredential class directly.

The NetworkCredential class is less secure than the PsCredential class
because it stores the user’s password in plain text. For more informa-
tion about the security implications of storing sensitive information in
plain text, see Recipe 16.6, “Securely Handle Sensitive Information.”

If a frequently run script requires credentials, you might consider caching those cre-
dentials in memory to improve the usability of that script. For example, in the region
of the script that calls the Get-Credential cmdlet, you can instead use the techniques
shown by Example 16-3.

The script prompts the user for their credentials the first time they call it but uses the
cached credentials for subsequent calls.

For more information about the Get-Credential cmdlet, type Get-Help Get-
Credential.

See Also
• Recipe 16.6, “Securely Handle Sensitive Information”

• Recipe 16.8, “Program: Start a Process As Another User”

Example 16-3. Caching credentials in memory to improve usability

$credential = $null
if(Test-Path Variable:\Lee.Holmes.CommonScript.CachedCredential)
{
 $credential = ${GLOBAL:Lee.Holmes.CommonScript.CachedCredential}
}

${GLOBAL:Lee.Holmes.CommonScript.CachedCredential} =
 Get-Credential $credential

$credential = ${GLOBAL:Lee.Holmes.CommonScript.CachedCredential}

300 | Chapter 16: Security and Script Signing

16.8 Program: Start a Process As Another User

Discussion
If your script requires user credentials, you will want to store those credentials in a
PowerShell PsCredential object. This lets you securely store those credentials, or
pass them to other commands that accept PowerShell credentials. When you write a
script that accepts credentials, consider letting the user to supply either a username
or a preexisting credential. Example 16-4 demonstrates a useful approach that allows
that. As the framework for this demonstration, the script lets you start a process as
another user.

Example 16-4. Start-ProcessAsUser.ps1

##
##
Start-ProcessAsUser.ps1
##
Launch a process under alternate credentials, providing functionality
similar to runas.exe.
##
ie:
##
PS >$file = Join-Path ([Environment]::GetFolderPath("System")) certmgr.msc
PS >Start-ProcessAsUser Administrator mmc $file
##
##
##
##

param(
 $credential = (Get-Credential),
 [string] $process = $(throw "Please specify a process to start."),
 [string] $arguments = ""
)

Create a real credential if they supplied a username
if($credential -is "String")
{
 $credential = Get-Credential $credential
}

Exit if they canceled out of the credential dialog
if(-not ($credential -is "System.Management.Automation.PsCredential"))
{
 return
}

Prepare the startup information (including username and password)
$startInfo = New-Object Diagnostics.ProcessStartInfo
$startInfo.Filename = $process

16.9 Securely Store Credentials on Disk | 301

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

16.9 Securely Store Credentials on Disk

Problem
Your script performs an operation that requires credentials, but you don’t want it to
require user interaction when it runs.

Solution
To securely store the credential’s password to disk so that your script can load it
automatically, use the ConvertFrom-SecureString and ConvertTo-SecureString
cmdlets.

Save the credential’s password to disk

The first step for storing a password on disk is usually a manual one. Given a creden-
tial that you’ve stored in the $credential variable, you can safely export its password
to password.txt using the following command:

PS >$credential.Password | ConvertFrom-SecureString |
 Set-Content c:\temp\password.txt

$startInfo.Arguments = $arguments

If we're launching as ourselves, set the "runas" verb
if(($credential.Username -eq "$ENV:Username") -or
 ($credential.Username -eq "\$ENV:Username"))
{
 $startInfo.Verb = "runas"
}
else
{
 $startInfo.UserName = $credential.Username
 $startInfo.Password = $credential.Password
 $startInfo.UseShellExecute = $false
}

Start the process
[Diagnostics.Process]::Start($startInfo)

Example 16-4. Start-ProcessAsUser.ps1 (continued)

302 | Chapter 16: Security and Script Signing

Recreate the credential from the password stored on disk

In the script that you want to run automatically, add the following commands:

$password = Get-Content c:\temp\password.txt | ConvertTo-SecureString
$credential = New-Object System.Management.Automation.PsCredential `
 "CachedUser",$password

These commands create a new credential object (for the CachedUser user) and store
that object in the $credential variable.

Discussion
When reading the solution, you might at first be wary of storing a password on disk.
While it is natural (and prudent) to be cautious of littering your hard drive with sen-
sitive information, the ConvertFrom-SecureString cmdlet encrypts this data using
Windows’ standard Data Protection API. This ensures that only your user account
can properly decrypt its contents.

While keeping a password secure is an important security feature, you may some-
times want to store a password (or other sensitive information) on disk so that other
accounts have access to it anyway. This is often the case with scripts run by service
accounts or scripts designed to be transferred between computers. The ConvertFrom-
SecureString and ConvertTo-SecureString cmdlets support this by letting you to
specify an encryption key.

When used with a hardcoded encryption key, this technique no longer
acts as a security measure. If a user can access to the content of your
automated script, they have access to the encryption key. If the user
has access to the encryption key, they have access to the data you were
trying to protect.

Although the solution stores the password in a specific named file, it is more com-
mon to store the file in a more generic location—such as the directory that contains
the script, or the directory that contains your profile.

To load password.txt from the same location as your profile, use the following
command:

$passwordFile = Join-Path (Split-Path $profile) password.txt
$password = Get-Content $passwordFile | ConvertTo-SecureString

To learn how to load it from the same location as your script, see Recipe 14.5, “Find
Your Script’s Location.”

For more information about the ConvertTo-SecureString and ConvertFrom-
SecureString cmdlets, type Get-Help ConvertTo-SecureString or Get-Help
ConvertFrom-SecureString.

16.10 Access User and Machine Certificates | 303

See Also
• Recipe 14.5, “Find Your Script’s Location”

16.10 Access User and Machine Certificates

Problem
You want to retrieve information about certificates for the current user or local
machine.

Solution
To browse and retrieve certificates on the local machine, use PowerShell’s certificate
drive. This drive is created by the certificate provider, as shown in Example 16-5.

Discussion
The certificate drive provides a useful way to navigate and view certificates for the
current user or local machine. For example, if your execution policy requires the use
of digital signatures, the following command tells you which publishers are trusted
to run scripts on your system:

Get-ChildItem cert:\CurrentUser\TrustedPublisher

The certificate provider is probably most commonly used to select a code-signing
certificate for the Set-AuthenticodeSignature cmdlet. The following command selects
the “best” code signing certificate—that being the one that expires last:

$certificates = Get-ChildItem Cert:\CurrentUser\My -CodeSign
$signingCert = @($certificates | Sort -Desc NotAfter)[0]

In this -CodeSign parameter lets you search for certificates in the certificate store that
support code signing. To search for certificates used for other purposes, see Recipe
16.11, “Program: Search the Certificate Store.”

Example 16-5. Exploring certificates in the certificate provider

PS >Set-Location cert:\CurrentUser\
PS >$cert = Get-ChildItem -Rec -CodeSign
PS >$cert | Format-List

Subject : CN=PowerShell User
Issuer : CN=PowerShell Local Certificate Root
Thumbprint : FD48FAA9281A657DBD089B5A008FAFE61D3B32FD
FriendlyName :
NotBefore : 4/22/2007 12:32:37 AM
NotAfter : 12/31/2039 3:59:59 PM
Extensions : {System.Security.Cryptography.Oid, System.Security.Cryptogr
 aphy.Oid}

304 | Chapter 16: Security and Script Signing

Although the certificate provider is useful for browsing and retrieving information
from the computer’s certificate stores, it does not lets you add or remove items from
these locations. If you want to manage certificates in the certificate store, the
System.Security.Cryptography.X509Certificates.X509Store class (and other related
classes from the System.Security.Cryptography.X509Certificates namespace) from
the .NET Framework support that functionality.

For more information about the certificate provider, type Get-Help Certificate.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 16.11, “Program: Search the Certificate Store”

16.11 Program: Search the Certificate Store

Discussion
One useful feature of the certificate provider is that it provides a –CodeSign parame-
ter that lets you search for certificates in the certificate store that support code sign-
ing. Code signing certificates are not the only kind of certificates, however; other
frequently used certificate types are Encrypting File System, Client Authentication,
and more.

Example 16-6 lets you search the certificate provider for certificates that support a
given Enhanced Key Usage (EKU).

Example 16-6. Search-CertificateStore.ps1

##
##
Search-CertificateStore.ps1
##
Search the certificate provider for certificates that match the specified
Enhanced Key Usage (EKU.)
##
ie:
##
PS >Search-CertificateStore "Encrypting File System"
##
##

param(
 $ekuName = $(throw "Please specify the friendly name of an " +
 "Enhanced Key Usage (such as 'Code Signing'")
)

16.11 Program: Search the Certificate Store | 305

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

Go through every certificate in the current user's "My" store
foreach($cert in Get-ChildItem cert:\CurrentUser\My)
{
 ## For each of those, go through its extensions
 foreach($extension in $cert.Extensions)
 {
 ## For each extension, go through its Enhanced Key Usages
 foreach($certEku in $extension.EnhancedKeyUsages)
 {
 ## If the friendly name matches, output that certificate
 if($certEku.FriendlyName -eq $ekuName)
 {
 $cert
 }
 }
 }
}

Example 16-6. Search-CertificateStore.ps1 (continued)

PART IV

IV.Administrator Tasks

Chapter 17, Files and Directories

Chapter 18, The Windows Registry

Chapter 19, Comparing Data

Chapter 20, Event Logs

Chapter 21, Processes

Chapter 22, System Services

Chapter 23, Active Directory

Chapter 24, Enterprise Computer Management

Chapter 25, Manage an Exchange 2007 Server

Chapter 26, Manage an Operations Manager 2007 Server

309

Chapter 17 CHAPTER 17

Files and Directories18

17.0 Introduction
One of the most common tasks when administering a system is working with its files
and directories. This is true when you administer the computer at the command line,
and it is true when you write scripts to administer it automatically.

Fortunately, PowerShell makes scripting files and directories as easy as working at
the command line—a point that many seasoned programmers and scripters often
miss. A perfect example of this comes when you wrestle with limited disk space and
need to find the files taking up the most space.

A typical programmer might approach this task by writing functions to scan a spe-
cific directory of a system. For each file, they check whether the file is big enough to
care about. If so, they add it to a list. For each directory in the original directory, the
programmer repeats this process (until there are no more directories to process).

As the saying goes, though, “you can write C in any programming language.” The
habits and preconceptions you bring to a language often directly influence how open
you are to advances in that language.

Being an administrative shell, PowerShell directly supports tasks such as visiting all
the files in a subdirectory or moving a file from one directory to another. That com-
plicated programmer-oriented script turns into a one-liner:

Get-ChildItem –Recurse | Sort-Object -Descending Length | Select -First 10

Before diving into your favorite programmer’s toolkit, check to see what PowerShell
supports in that area. In many cases, it can handle it without requiring your pro-
grammer’s bag of tricks.

310 | Chapter 17: Files and Directories

17.1 Find All Files Modified Before a Certain Date

Problem
You want to find all files last modified before a certain date.

Solution
To find all files modified before a certain date, use the Get-ChildItem cmdlet to list
the files in a directory, and then use the Where-Object cmdlet to compare the
LastWriteTime property to the date you are interested in. For example, to find all files
created before this year:

Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -lt "01/01/2007" }

Discussion
A common reason to compare files against a certain date is to find recently modified
(or not recently modified) files. This looks almost the same as the example given by
the solution, but your script can’t know the exact date to compare against.

In this case, the AddDays() method in the .NET Framework’s DateTime class gives you
a way to perform some simple calendar arithmetic. If you have a DateTime object, you
can add or subtract time from it to represent a different date altogether. For exam-
ple, to find all files modified in the last 30 days:

$compareDate = (Get-Date).AddDays(-30)
Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -ge $compareDate }

Similarly, to find all files more than 30 days old:

$compareDate = (Get-Date).AddDays(-30)
Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -lt $compareDate }

In this example, the Get-Date cmdlet returns an object that represents the current
date and time. You call the AddDays() method to subtract 30 days from that time,
which stores the date representing “30 days ago” in the $compareDate variable. Next,
you compare that date against the LastWriteTime property of each file that the Get-
ChildItem cmdlet returns.

The DateTime class is the administrator’s favorite calendar!

PS >[DateTime]::IsLeapYear(2008)

True

PS >$daysTillSummer = [DateTime] "06/21/2008" - (Get-Date)

PS >$daysTillSummer.Days

283

17.2 Clear or Remove a File | 311

For more information about the Get-ChildItem cmdlet, type Get-Help Get-ChildItem.
For more information about the Where-Object cmdlet, see Recipe 2.1, “Filter Items in
a List or Command Output.”

See Also
• Recipe 2.1, “Filter Items in a List or Command Output”

17.2 Clear or Remove a File

Problem
You want to clear the content of a file, or remove that file altogether.

Solution
To clear the content from a file, use the Clear-Content cmdlet. Use the Remove-Item
cmdlet to remove that file altogether, as shown by Example 17-1.

Discussion
The (aptly named) Clear-Content and Remove-Item cmdlets clear the content from an
item and remove an item, respectively. Although the solution demonstrates this only
for files in the filesystem, they in fact apply to any PowerShell providers that support
the concepts of “content” and “items.” Examples of other drives that support these
content and item concepts are the Function:, Alias:, and Variable:. The HKLM:,

Example 17-1. Clearing content from and removing a file

PS >Get-Content test.txt
Hello World
PS >Clear-Content test.txt
PS >Get-Content test.txt
PS >Get-Item test.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/23/2007 8:05 PM 0 test.txt

PS >Remove-Item test.txt
PS >Get-Item test.txt
Get-Item : Cannot find path 'C:\temp\test.txt' because it does not exist.
At line:1 char:9
+ Get-Item <<<< test.txt

312 | Chapter 17: Files and Directories

HKCU:, and Env: drives do not support the concept of content, but do let you remove
items with the Remove-Item cmdlet.

The Remove-Item cmdlet has a handful of standard aliases: ri, rm,
rmdir, del, erase, and rd.

For more information about the Remove-Item or Clear-Content cmdlets, type Get-Help
Remove-Item or Get-Help Clear-Content.

17.3 Manage and Change the Attributes of a File

Problem
You want to update the ReadOnly, Hidden, or System attributes of a file.

Solution
Most of the time, you will want to use the familiar attrib.exe program to change the
attributes of a file:

attrib +r test.txt
attrib -s test.txt

To set only the ReadOnly attribute, you can optionally set the IsReadOnly property on
the file:

$file = Get-Item test.txt
$file.IsReadOnly = $true

To apply a specific set of attributes, use the Attributes property on the file:

$file = Get-Item test.txt
$file.Attributes = "ReadOnlyNotContentIndexed"

Directory listings show the attributes on a file, but you can also access the Mode or
Attributes property directly:

PS >$file.Attributes = "ReadOnly","System","NotContentIndexed"
PS >$file.Mode
--r-s
PS >$file.Attributes
ReadOnly, System, NotContentIndexed

Discussion
When the Get-Item or Get-ChildItem cmdlets retrieve a file, the resulting file has an
Attributes property. This property doesn’t offer much in addition to the regular
attrib.exe program, although it does make it easier to set the attributes to a specific
state.

17.4 Get the Files in a Directory | 313

Be aware that setting the Hidden attribute on a file removes it from
most default views. If you want to retrieve it after hiding it, most com-
mands require a –Force parameter. Similarly, setting the ReadOnly
attribute on a file causes most write operations on that file to fail
unless you call that command with the –Force parameter.

If you want to add an attribute to a file using the Attributes property (rather than
attrib.exe for some reason), this is how you would do that:

$file = Get-Item test.txt
$readOnly = [IO.FileAttributes] "ReadOnly"
$file.Attributes = $file.Attributes -bor $readOnly

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

17.4 Get the Files in a Directory

Problem
You want to get or list the files in a directory.

Solution
To retrieve the list of files in a directory, use the Get-ChildItem cmdlet. To get a spe-
cific item, use the Get-Item cmdlet:

• To list all items in the current directory, use the Get-ChildItem cmdlet:
Get-ChildItem

• To list all items that match a wildcard, supply a wildcard to the Get-ChildItem
cmdlet:

Get-ChildItem *.txt

• To list all files that match a wildcard in the current directory (and all its chil-
dren), use the –Include and –Recurse parameters of the Get-ChildItem cmdlet:

Get-ChildItem –Include *.txt -Recurse

• To list all directories in the current directory, use the Where-Object cmdlet to test
the PsIsContainer property:

Get-ChildItem | Where { $_.PsIsContainer }

• To get information about a specific item, use the Get-Item cmdlet:
Get-Item test.txt

314 | Chapter 17: Files and Directories

Discussion
Although most commonly used on the filesystem, the Get-ChildItem and Get-Item
cmdlets in fact work against any items in any of the PowerShell drives. In addition to
A: through Z: (the standard file system drives), they also work on Alias:, Cert:, Env:,
Function:, HKLM:, HKCU:, and Variable:.

One example lists files that match a wildcard in a directory and all its
children. That example works on any PowerShell provider. However,
PowerShell can retrieve your results more quickly if you use a pro-
vider-specific filter, as described in the following section, Recipe 17.5,
“Find Files That Match a Pattern.”

The solution demonstrates some simple wildcard scenarios that the Get-ChildItem
cmdlet supports, but PowerShell in fact enables several more advanced scenarios. For
more information about these scenarios, see the following section, Recipe 17.5,
“Find Files That Match a Pattern.”

In the filesystem, these cmdlets return objects from the .NET Framework that repre-
sent files and directories—instances of the System.IO.FileInfo and System.IO.
DirectoryInfo classes, respectively. Each provides a great deal of useful information:
attributes, modification times, full name, and more. Although the default directory
listing exposes a lot of information, PowerShell provides even more. For more infor-
mation about working with classes from the .NET Framework, see Recipe 3.4,
“Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 17.5, “Find Files That Match a Pattern”

17.5 Find Files That Match a Pattern

Problem
You want to get a list of files that match a specific pattern.

Solution
Use the Get-ChildItem cmdlet for both simple and advanced wildcard support:

• To find all items in the current directory that match a PowerShell wildcard, sup-
ply that wildcard to the Get-ChildItem cmdlet:

Get-ChildItem *.txt

17.5 Find Files That Match a Pattern | 315

• To find all items in the current directory that match a provider-specific filter, sup-
ply that filter to the –Filter parameter:

Get-ChildItem –Filter *~2*

• To find all items in the current directory that do not match a PowerShell wild-
card, supply that wildcard to the –Exclude parameter:

Get-ChildItem -Exclude *.txt

• To find all items in subdirectories that match a PowerShell wildcard, use
the –Include and –Recurse parameters:

Get-ChildItem –Include *.txt –Recurse

• To find all items in subdirectories that match a provider-specific filter, use the
–Filter and –Recurse parameters:

Get-ChildItem –Filter *.txt –Recurse

• To find all items in subdirectories that do not match a PowerShell wildcard, use
the –Exclude and –Recurse parameters:

Get-ChildItem –Exclude *.txt –Recurse

Use the Where-Object cmdlet for advanced regular expression support:

• To find all items with a filename that matches a regular expression, use the
Where-Object cmdlet to compare the Name property to the regular expression:

Get-ChildItem | Where-Object { $_.Name -match '^KB[0-9]+\.log$' }

• To find all items with a directory name that matches a regular expression, use
the Where-Object cmdlet to compare the DirectoryName property to the regular
expression:

Get-ChildItem –Recurse | Where-Object { $_.DirectoryName -match 'Release' }

• To find all items with a directory name or filename that matches a regular
expression, use the Where-Object cmdlet to compare the FullName property to the
regular expression:

Get-ChildItem –Recurse | Where-Object { $_.FullName -match 'temp' }

Discussion
The Get-ChildItem cmdlet supports wildcarding through three parameters:

Path
The -Path parameter is the first (and default) parameter. While you can enter
simple paths such as ., C:\ or D:\Documents, you can also supply paths that
include wildcards—such as *, *.txt, [a-z]???.log, or even C:\win**.N[a-f]?\
F*\v2*\csc.exe.

Include/Exclude
The –Include and –Exclude parameters act as a filter on wildcarding that hap-
pens on the -Path parameter. If you specify the –Recurse parameter, the –Include
and –Exclude wildcards apply to all items returned.

316 | Chapter 17: Files and Directories

The most common mistake with the –Include parameter comes when
you use it against a path with no wildcards. For example, this doesn’t
seem to produce the expected results:

Get-ChildItem $env:WINDIR -Include *.log

That command produces no results, as you have not supplied an item
wildcard to the path. Instead, the correct command is:

Get-ChildItem $env:WINDIR* -Include *.log

Filter
The –Filter parameter lets you filter results based on the provider-specific fil-
tering language of the provider from which you retrieve items. Since Power-
Shell’s wildcarding support closely mimics filesystem wildcards, and most
people use the –Filter parameter only on the filesystem, this seems like a
redundant (and equivalent) parameter. A SQL provider, however, would use
SQL syntax in its –Filter parameter. Likewise, an Active Directory provider
would use LDAP paths in its –Filter parameter.

Although it may not be obvious, the filesystem provider’s filtering language is not
exactly the same as the PowerShell wildcard syntax. For example, the -Filter param-
eter matches against the short filenames, too:

PS >Get-ChildItem | Select-Object Name

Name

A Long File Name With Spaces Also.txt
A Long File Name With Spaces.txt

PS >Get-ChildItem *1* | Select-Object Name
PS >Get-ChildItem -Filter *1* | Select-Object Name

Name

A Long File Name With Spaces.txt

On the other hand, PowerShell’s wildcard syntax supports far more than the file-
system’s native filtering language. For more information about the PowerShell’s
wildcard syntax, type Get-Help About_WildCard.

When you want to perform filtering even more advanced than what PowerShell’s
wildcarding syntax offers, the Where-Object cmdlet provides infinite possibilities. For
example, to exclude certain directories from a search:

Get-ChildItem -Rec | Where-Object { $_.DirectoryName -notmatch "Debug" }

or, to list all directories:

Get-ChildItem | Where-Object { $_.PsIsContainer }

17.6 Manage Files That Include Special Characters | 317

Since the syntax of the Where-Object cmdlet can sometimes be burdensome for sim-
ple queries, the Compare-Property script provided in Recipe 2.2, “Program: Simplify
Most Where-Object Filters” provides an attractive alternative:

Get-ChildItem -Rec | Compare-Property DirectoryName notmatch Debug

For a filter that is difficult (or impossible) to specify programmatically, the Select-
FilteredObject script provided by Recipe 2.3, “Program: Interactively Filter Lists of
Objects” lets you interactively filter the output.

Because of PowerShell’s pipeline model, an advanced file set generated by Get-
ChildItem automatically turns into an advanced file set for other cmdlets to oper-
ate on:

PS >Get-ChildItem -Rec | Where-Object { $_.Length -gt 20mb } |
>> Sort-Object -Descending Length | Select-FilteredObject |
>> Remove-Item -WhatIf
>>
What if: Performing operation "Remove File" on Target "C:\temp\backup092300
.zip".
What if: Performing operation "Remove File" on Target "C:\temp\sp-tricking_
iT2.zip".
What if: Performing operation "Remove File" on Target "C:\temp\slime.mov".
What if: Performing operation "Remove File" on Target "C:\temp\hello-world.
mov".

For more information about the Get-ChildItem cmdlet, type Get-Help Get-ChildItem.

For more information about the Where-Object cmdlet, type Get-Help Where-Object.

See Also
• Recipe 2.2, “Program: Simplify Most Where-Object Filters”

• Recipe 2.3, “Program: Interactively Filter Lists of Objects”

17.6 Manage Files That Include Special Characters

Problem
You want to use a cmdlet that supports wildcarding but provide a filename that
includes wildcard characters.

Solution
To prevent PowerShell from treating those characters as wildcard characters, use the
cmdlet’s –LiteralPath (or similarly named) parameter if it defines one:

Get-ChildItem -LiteralPath '[My File].txt'

318 | Chapter 17: Files and Directories

Discussion
One consequence of PowerShell’s advanced wildcard support is that the square
brackets used to specify character ranges sometimes conflict with actual filenames.
Consider the following example:

PS >Get-ChildItem | Select-Object Name

Name

[My File].txt

PS >Get-ChildItem '[My File].txt' | Select-Object Name
PS >Get-ChildItem -LiteralPath '[My File].txt' | Select-Object Name

Name

[My File].txt

The first command clearly demonstrates that we have a file called [My File].txt.
When we try to retrieve it (passing its name to the Get-ChildItem cmdlet), we see no
results. Since square brackets are wildcard characters in PowerShell (like * and ?), the
text we provided turns into a search expression rather than a filename.

The –LiteralPath parameter (or a similarly named parameter in other cmdlets) tells
PowerShell that the filename is named exactly—not a wildcard search term.

In addition to wildcard matching, filenames may sometimes run afoul of another
topic—PowerShell escape sequences. For example, the back-tick character (`) in
PowerShell means the start of an escape sequence, such as `t (tab), `n (newline), or
`a (alarm). To prevent PowerShell from interpreting a back-tick as an escape
sequence, surround that string in single quotes instead of double quotes.

For more information about the Get-ChildItem cmdlet, type Get-Help Get-ChildItem.

For more information about PowerShell’s special characters, type Get-Help About_
Special_Characters.

17.7 Program: Get Disk Usage Information

Discussion
When disk space starts running low, you’ll naturally want to find out where to focus
your cleanup efforts. Sometimes, you may tackle this by looking for large directories
(including the directories in them), but other times, you may solve this by looking for
directories that are large simply from the files they contain.

17.7 Program: Get Disk Usage Information | 319

Example 17-2 collects both types of data. It also demonstrates an effective use of
calculated properties. Like the Add-Member cmdlet, calculated properties let you add
properties to output objects by specifying the expression that generates their data.

For more information about the calculated properties and the Add-Member cmdlet, see
Recipe 3.11, “Add Custom Methods and Properties to Objects.”

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

Example 17-2. Get-DiskUsage.ps1

##
##
Get-DiskUsage.ps1
##
Retrieve information about disk usage in the current directory and all
subdirectories. If you specify the -IncludeSubdirectories flag, this
script accounts for the size of subdirectories in the size of a directory.
##
ie:
##
PS >Get-DiskUsage
PS >Get-DiskUsage -IncludeSubdirectories
##
##

param(
 [switch] $includeSubdirectories
)

If they specify the -IncludeSubdirectories flag, then we want to account
for all subdirectories in the size of each directory
if($includeSubdirectories)
{
 Get-ChildItem | Where-Object { $_.PsIsContainer } |
 Select-Object Name,
 @{ Name="Size";
 Expression={ ($_ | Get-ChildItem -Recurse |
 Measure-Object -Sum Length).Sum + 0 } }
}
Otherwise, we just find all directories below the current directory,
and determine their size
else
{
 Get-ChildItem -Recurse | Where-Object { $_.PsIsContainer } |
 Select-Object FullName,
 @{ Name="Size";
 Expression={ ($_ | Get-ChildItem |
 Measure-Object -Sum Length).Sum + 0 } }
}

320 | Chapter 17: Files and Directories

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 3.11, “Add Custom Methods and Properties to Objects”

17.8 Determine the Current Location

Problem
You want to determine the current location from a script or command.

Solution
To retrieve the current location, use the Get-Location cmdlet. The Get-Location
cmdlet provides the Drive and Path as two common properties:

$currentLocation = (Get-Location).Path

As a short-form for (Get-Location).Path, use the $pwd automatic variable.

Discussion
The Get-Location cmdlet returns information about the current location. From the
information it returns, you can access the current drive, provider, and path.

This current location affects PowerShell commands and programs that you launch
from PowerShell. It does not apply when you interact with the .NET Framework,
however. If you need to call a .NET method that interacts with the filesystem, always
be sure to provide fully qualified paths:

[System.Reflection.Assembly]::LoadFile("d:\documents\path_to_library.dll")

If you are sure that the file exists, the Resolve-Path cmdlet lets you translate a rela-
tive path to an absolute path:

$filePath = (Resolve-Path library.dll).Path

If the file does not exist, use the Join-Path cmdlet in combination with the Get-
Location cmdlet to specify the file:

$filePath = Join-Path (Get-Location) library.dll

Another alternative that combines the functionality of both approaches is a bit more
advanced but also lets you specify relative locations. It comes from methods in the
PowerShell $executionContext variable, which provides functionality normally used
by cmdlet and provider authors:

$executionContext.SessionState.Path.`
 GetUnresolvedProviderPathFromPSPath("..\library.dll")

For more information about the Get-Location cmdlet, type Get-Help Get-Location.

17.10 Program: Get the MD5 or SHA1 Hash of a File | 321

17.9 Monitor a File for Changes

Problem
You want to monitor the end of a file for new content.

Solution
To monitor the end of a file for new content, use the –Wait parameter of the Get-
Content cmdlet.

Get-Content log.txt -Wait

Discussion
The –Wait parameter on the Get-Content cmdlet acts much like the traditional Unix
tail command with the –follow parameter. If you provide the –Wait parameter, the
Get-Content cmdlet reads the content of the file but doesn’t exit. When a program
appends new content to the end of the file, the Get-Content cmdlet returns that con-
tent and continues to wait.

Unlike the Unix tail command, the Get-Content cmdlet does not sup-
port a feature to let you start reading from the end of a file. If you need
to monitor the end of an extremely large file, a specialized file moni-
toring utility is a valid option.

For more information about the Get-Content cmdlet, type Get-Help Get-Content. For
more information about the –Wait parameter, type Get-Help FileSystem.

17.10 Program: Get the MD5 or SHA1 Hash of a File

Discussion
File hashes provide a useful way to check for damage or modification to a file. A digi-
tal hash acts like the fingerprint of a file and detects even minor modifications. If the
content of a file changes, then so does its hash. Many online download services pro-
vide the hash of a file on that file’s download page so that you can determine
whether the transfer somehow corrupts the file (see Figure 17-1).

Figure 17-1. File hashes as a verification mechanism

322 | Chapter 17: Files and Directories

There are three common ways to generate the hash of a file: MD5, SHA1, SHA256.
The two most common are MD5, followed by SHA1. While popular, these hash
types can be trusted to detect only accidental file modification. They can be fooled if
somebody wants to tamper with the file without changing its hash. The SHA256
algorithm can be used to protect against even intentional file tampering.

Example 17-3 lets you determine the hash of a file (or of multiple files if provided by
the pipeline).

Example 17-3. Get-FileHash.ps1

##
##
Get-FileHash.ps1
##
Get the hash of an input file.
##
ie:
##
PS >Get-FileHash myFile.txt
PS >dir | Get-FileHash
PS >Get-FileHash myFile.txt -Hash SHA1
##
##

param(
 $path,
 $hashAlgorithm = "MD5"
)

Create the hash object that calculates the hash of our file. If they
provide an invalid hash algorithm, provide an error message.
if($hashAlgorithm -eq "MD5")
{
 $hasher = [System.Security.Cryptography.MD5]::Create()
}
elseif($hashAlgorithm -eq "SHA1")
{
 $hasher = [System.Security.Cryptography.SHA1]::Create()
}
elseif($hashAlgorithm -eq "SHA256")
{
 $hasher = [System.Security.Cryptography.SHA256]::Create()
}
else
{
 $errorMessage = "Hash algorithm $hashAlgorithm is not valid. Valid " +
 "algorithms are MD5, SHA1, and SHA256."
 Write-Error $errorMessage
 return
}

17.10 Program: Get the MD5 or SHA1 Hash of a File | 323

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

Create an array to hold the list of files
$files = @()

If they specified the file name as a parameter, add that to the list
of files to process
if($path)
{
 $files += $path
}
Otherwise, take the files that they piped in to the script.
For each input file, put its full name into the file list
else
{
 $files += @($input | Foreach-Object { $_.FullName })
}

Go through each of the items in the list of input files
foreach($file in $files)
{
 ## Convert it to a fully-qualified path
 $filename = (Resolve-Path $file -ErrorAction SilentlyContinue).Path

 ## If the path does not exist (or is not a file,) just continue
 if((-not $filename) -or (-not (Test-Path $filename -Type Leaf)))
 {
 continue
 }

 ## Use the ComputeHash method from the hash object to calculate
 ## the hash
 $inputStream = New-Object IO.StreamReader $filename
 $hashBytes = $hasher.ComputeHash($inputStream.BaseStream)
 $inputStream.Close()

 ## Convert the result to hexadecimal
 $builder = New-Object System.Text.StringBuilder
 $hashBytes | Foreach-Object { [void] $builder.Append($_.ToString("X2")) }

 ## Return a custom object with the important details from the
 ## hashing
 $output = New-Object PsObject
 $output | Add-Member NoteProperty Path ([IO.Path]::GetFileName($file))
 $output | Add-Member NoteProperty HashAlgorithm $hashAlgorithm
 $output | Add-Member NoteProperty HashValue ([string] $builder.ToString())
 $output
}

Example 17-3. Get-FileHash.ps1 (continued)

324 | Chapter 17: Files and Directories

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

17.11 Create a Directory

Problem
You want to create a directory, or file folder.

Solution
To create a directory, use the md or mkdir function:

PS >md NewDirectory

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/29/2007 7:31 PM NewDirectory

Discussion
The md and mkdir functions are simple wrappers around the more sophisticated New-
Item cmdlet. As you might guess, the New-Item cmdlet creates an item at the location
you provide. The New-Item cmdlet doesn’t work only against the filesystem, how-
ever. Any providers that support the concept of items automatically support this
cmdlet as well.

For more information about the New-Item cmdlet, type Get-Help New-Item.

17.12 Remove a File or Directory

Problem
You want to remove a file or directory.

Solution
To remove a file or directory, use the Remove-Item cmdlet:

PS >Test-Path NewDirectory
True
PS >Remove-Item NewDirectory
PS >Test-Path NewDirectory
False

17.13 Rename a File or Directory | 325

Discussion
The Remove-Item cmdlet removes an item from the location you provide. The Remove-
Item cmdlet doesn’t work only against the filesystem, however. Any providers that
support the concept of items automatically support this cmdlet as well.

The Remove-Item cmdlet lets you specify multiple files through its Path,
Include, Exclude, and Filter parameters. For information on how to
use these parameters effectively, see Recipe 17.5, “Find Files That
Match a Pattern,” earlier in this chapter.

If the item is a container (for example, a directory), PowerShell warns you that your
action will also remove anything inside that container. You can provide the –Recurse
flag if you want to prevent this message.

For more information about the Remove-Item cmdlet, type Get-Help Remove-Item.

See Also
• Recipe 17.5, “Find Files That Match a Pattern”

17.13 Rename a File or Directory

Problem
You want to rename a file or directory.

Solution
To rename an item in a provider, use the Rename-Item cmdlet:

PS > Rename-Item example.txt example2.txt

Discussion
The Rename-Item cmdlet changes the name of an item. While that may seem like
pointing out the obvious, a common mistake is:

PS >Rename-Item c:\temp\example.txt c:\temp\example2.txt
Rename-Item : Cannot rename because the target specified is not a path.
At line:1 char:12
+ Rename-Item <<<< c:\temp\example.txt c:\temp\example2.txt

In this situation, PowerShell provides a (not very helpful) error message because we
specified a path for the new item, rather than just its name.

One thing that some shells allow you to do is rename multiple files at the same time.
In those shells, the command looks like this:

ren *.gif *.jpg

326 | Chapter 17: Files and Directories

PowerShell does not support this syntax, but provides even more power through its
–replace operator. As a simple example, we can emulate the preceding command:

Get-ChildItem *.gif | Rename-Item -NewName { $_.Name -replace '.gif$','.jpg' }

This syntax provides an immense amount of power. Consider removing underscores
from filenames and replacing them with spaces:

Get-ChildItem *_* | Rename-Item -NewName { $_.Name -replace '_',' ' }

or restructuring files in a directory with the naming convention of Report_Project_
Quarter.txt:

PS >Get-ChildItem | Select Name

Name

Report_Project1_Q3.txt
Report_Project1_Q4.txt
Report_Project2_Q1.txt

You might want to change that to Quarter_Project.txt with an advanced replace-
ment pattern:

PS >Get-ChildItem |
>> Rename-Item -NewName { $_.Name -replace '.*_(.*)_(.*)\.txt','$2_$1.txt' }
>>
PS >Get-ChildItem | Select Name

Name

Q1_Project2.txt
Q3_Project1.txt
Q4_Project1.txt

For more information about the –replace operator, see Recipe 5.8, “Replace Text in
a String.”

Like the other *-Item cmdlets, the Rename-Item doesn’t work only against the filesys-
tem. Any providers that support the concept of items automatically support this
cmdlet as well. For more information about the Rename-Item cmdlet, type Get-Help
Rename-Item.

See Also
• Recipe 5.8, “Replace Text in a String”

17.14 Move a File or Directory

Problem
You want to move a file or directory.

17.15 Get the ACL of a File or Directory | 327

Solution
To move a file or directory, use the Move-Item cmdlet:

PS >Move-Item example.txt c:\temp\example2.txt

Discussion
The Move-Item cmdlet moves an item from one location to another. Like the other
*-Item cmdlets, the Move-Item doesn’t work only against the filesystem. Any provid-
ers that support the concept of items automatically support this cmdlet as well.

The Move-Item cmdlet lets you specify multiple files through its Path,
Include, Exclude, and Filter parameters. For information on how to
use these parameters effectively, see Recipe 17.5, “Find Files That
Match a Pattern.”

Although the Move-Item cmdlet works in every provider, you cannot move items
between providers. For more information about the Move-Item cmdlet, type Get-Help
Move-Item.

See Also
• Recipe 17.5, “Find Files That Match a Pattern”

17.15 Get the ACL of a File or Directory

Problem
You want to retrieve the ACL of a file or directory.

Solution
To retrieve the ACL of a file, use the Get-Acl cmdlet:

PS >Get-Acl example.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Path Owner Access
---- ----- ------
example.txt LEE-DESK\Lee BUILTIN\Administrator...

328 | Chapter 17: Files and Directories

Discussion
The Get-Acl cmdlet retrieves the security descriptor of an item. This cmdlet doesn’t
work only against the filesystem, however. Any provider (for example, the Registry
provider) that supports the concept of security descriptors also supports the Get-Acl
cmdlet.

The Get-Acl cmdlet returns an object that represents the security descriptor of the
item and is specific to the provider that contains the item. In the filesystem, this
returns a .NET System.Security.AccessControl.FileSecurity object that you can
explore for further information. For example, Example 17-4 searches a directory for
possible ACL misconfigurations by ensuring that each file contains an Administra-
tors, Full Control ACL.

Example 17-4. Get-AclMisconfiguration.ps1

##
##
Get-AclMisconfiguration.ps1
##
Demonstration of functionality exposed by the Get-Acl cmdlet. This script
goes through all access rules in all files in the current directory, and
ensures that the Administrator group has full control of that file.
##
##

Get all files in the current directory
foreach($file in Get-ChildItem)
{
 ## Retrieve the ACL from the current file
 $acl = Get-Acl $file
 if(-not $acl)
 {
 continue
 }

 $foundAdministratorAcl = $false

 ## Go through each access rule in that ACL
 foreach($accessRule in $acl.Access)
 {
 ## If we find the Administrator, Full Control access rule,
 ## then set the $foundAdministratorAcl variable
 if(($accessRule.IdentityReference -like "*Administrator*") -and
 ($accessRule.FileSystemRights -eq "FullControl"))
 {
 $foundAdministratorAcl = $true
 }
 }

 ## If we didn't find the administrator ACL, output a message
 if(-not $foundAdministratorAcl)

17.16 Set the ACL of a File or Directory | 329

For more information about the Get-Acl command, type Get-Help Get-Acl. For more
information about working with classes from the .NET Framework, see Recipe 3.4,
“Work with .NET Objects.” For more information about running scripts, see Recipe
1.1, “Run Programs, Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 3.4, “Work with .NET Objects”

17.16 Set the ACL of a File or Directory

Problem
You want to change the ACL of a file or directory.

Solution
To change the ACL of a file, use the Set-Acl cmdlet. This example prevents the Guest
account from accessing a file:

$acl = Get-Acl example.txt
$arguments = "LEE-DESK\Guest","FullControl","Deny"
$accessRule =
 New-Object System.Security.AccessControl.FileSystemAccessRule $arguments
$acl.SetAccessRule($accessRule)
$acl | Set-Acl example.txt

Discussion
The Set-Acl cmdlet sets the security descriptor of an item. This cmdlet doesn’t work
only against the filesystem, however. Any provider (for example, the Registry pro-
vider) that supports the concept of security descriptors also supports the Set-Acl
cmdlet.

The Set-Acl cmdlet requires that you provide it with an ACL to apply to the item.
While it is possible to construct the ACL from scratch, it is usually easiest to retrieve
it from the item beforehand (as demonstrated in the solution). To retrieve the ACL,
use the Get-Acl cmdlet. Once you’ve modified the access control rules on the ACL,
simply pipe them to the Set-Acl cmdlet to make them permanent.

 {
 "Found possible ACL Misconfiguration: $file"
 }
}

Example 17-4. Get-AclMisconfiguration.ps1 (continued)

330 | Chapter 17: Files and Directories

In the solution, the $arguments list that we provide to the FileSystemAccessRule con-
structor explicitly sets a Deny rule on the Guest account of the LEE-DESK computer for
FullControl permission. For more information about working with classes (such as
the FileSystemAccessRule class) from the .NET Framework, see Recipe 3.4, “Work
with .NET Objects.”

Although the Set-Acl command is powerful, you may already be familiar with
command-line tools that offer similar functionality (such as cacls.exe). Although
these tools generally do not work on the registry (or other providers that support
PowerShell security descriptors), you can of course continue to use these tools
from PowerShell.

For more information about the Set-Acl cmdlet, type Get-Help Set-Acl. For more
information about the Get-Acl cmdlet, see Recipe 17.15, “Get the ACL of a File or
Directory.”

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 17.15, “Get the ACL of a File or Directory”

17.17 Program: Add Extended File Properties to Files

Discussion
The Explorer shell provides useful information about a file when you click on its
Properties dialog. It includes the authoring information, image information, music
information, and more (see Figure 17-2).

Figure 17-2. Extended file properties in Windows Explorer

17.17 Program: Add Extended File Properties to Files | 331

PowerShell doesn’t expose this information by default, but it is possible to obtain
these properties from the Shell.Application COM object. Example 17-5 does just
that—and adds this extended information as properties to the files returned by the
Get-ChildItem cmdlet.

Example 17-5. Add-ExtendedFileProperties.ps1

##
##
Add-ExtendedFileProperties.ps1
##
Add the extended file properties normally shown in Explorer's
"File Properties" tab.
##
ie:
##
PS >Get-ChildItem | Add-ExtendedFileProperties.ps1 |
Format-Table Name,"Bit Rate"
##
##

begin
{
 ## Create the Shell.Application COM object that provides this
 ## functionality
 $shellObject = New-Object -Com Shell.Application

 ## Store the property names and identifiers for all of the shell
 ## properties
 $itemProperties = @{
 1 = "Size"; 2 = "Type"; 3 = "Date Modified";
 4 = "Date Created"; 5 = "Date Accessed";
 7 = "Status"; 8 = "Owner";
 9 = "Author"; 10 = "Title"; 11 = "Subject";
 12 = "Category"; 13 = "Pages"; 14 = "Comments";
 15 = "Copyright"; 16 = "Artist"; 17 = "Album Title";
 19 = "Track Number"; 20 = "Genre"; 21 = "Duration";
 22 = "Bit Rate"; 23 = "Protected"; 24 = "Camera Model";
 25 = "Date Picture Taken"; 26 = "Dimensions";
 30 = "Company"; 31 = "Description"; 32 = "File Version";
 33 = "Product Name"; 34 = "Product Version" }
}

process
{
 ## Get the file from the input pipeline. If it is just a filename
 ## (rather than a real file,) piping it to the Get-Item cmdlet will
 ## get the file it represents.
 $fileItem = $_ | Get-Item

 ## Don't process directories
 if($fileItem.PsIsContainer)
 {

332 | Chapter 17: Files and Directories

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

17.18 Program: Create a Filesystem Hard Link

Discussion
It is sometimes useful to refer to the same file by two different names or locations.
You can’t solve this problem by copying the item, because modifications to one file
do not automatically affect the other.

The solution to this is called a hard link, an item of a new name that points to the
data of another file. The Windows operating system supports hard links, but only
Windows Vista includes a utility that lets you create them.

Example 17-6 lets you create hard links without needing to install additional tools.
It uses (and requires) the Invoke-WindowsApi.ps1 script provided in Recipe 15.9,
“Program: Invoke Native Windows API Calls.”

 $fileItem
 return
 }

 ## Extract the file name and directory name
 $directoryName = $fileItem.DirectoryName
 $filename = $fileItem.Name

 ## Create the folder object and shell item from the COM object
 $folderObject = $shellObject.NameSpace($directoryName)
 $item = $folderObject.ParseName($filename)

 ## Now, go through each property and add its information as a
 ## property to the file we are about to return
 foreach($itemProperty in $itemProperties.Keys)
 {
 $fileItem | Add-Member NoteProperty $itemProperties[$itemProperty] `
 $folderObject.GetDetailsOf($item, $itemProperty)
 }

 ## Finally, return the file with the extra shell information
 $fileItem
}

Example 17-5. Add-ExtendedFileProperties.ps1 (continued)

17.18 Program: Create a Filesystem Hard Link | 333

Example 17-6. New-FilesystemHardLink.ps1

##
##
New-FileSystemHardLink.ps1
##
Create a new hard link, which allows you to create a new name by which you
can access an existing file. Windows only deletes the actual file once
you delete all hard links that point to it.
##
ie:
##
PS >"Hello" > test.txt
PS >dir test* | select name
##
Name

test.txt
##
PS >New-FilesystemHardLink.ps1 test2.txt test.txt
PS >type test2.txt
Hello
PS >dir test* | select name
##
Name

test.txt
test2.txt
##
##

param(
 ## The new filename you want to create
 [string] $filename,

 ## The existing file that you want the new name to point to
 [string] $existingFilename
)

Ensure that the provided names are absolute paths
$filename = $executionContext.SessionState.Path.`
 GetUnresolvedProviderPathFromPSPath($filename)
$existingFilename = Resolve-Path $existingFilename

Prepare the parameter types and parameters for the CreateHardLink function
$parameterTypes = [string], [string], [IntPtr]
$parameters = [string] $filename, [string] $existingFilename, [IntPtr]::Zero

Call the CreateHardLink method in the Kernel32 DLL
$currentDirectory = Split-Path $myInvocation.MyCommand.Path
$invokeWindowsApiCommand = Join-Path $currentDirectory Invoke-WindowsApi.ps1
$result = & $invokeWindowsApiCommand "kernel32" `
 ([bool]) "CreateHardLink" $parameterTypes $parameters

334 | Chapter 17: Files and Directories

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 15.9, “Program: Invoke Native Windows API Calls”

17.19 Program: Create a ZIP Archive

Discussion
When transporting or archiving files, it is useful to store those files in an archive. ZIP
archives are the most common type of archive, so it would be useful to have a script
to help manage them.

For many purposes, traditional command-line ZIP archive utilities may fulfill your
needs. If they do not support the level of detail or interaction that you need for
administrative tasks, a more programmatic alternative is attractive.

Example 17-7 lets you create ZIP archives simply by piping files into them. It
requires that you have the SharpZipLib installed, which you can obtain from http://
www.icsharpcode.net/OpenSource/SharpZipLib/.

Provide an error message if the call fails
if(-not $result)
{
 $message = "Could not create hard link of $filename to " +
 "existing file $existingFilename"
 Write-Error $message
}

Example 17-7. New-ZipFile.ps1

##
##
New-ZipFile.ps1
##
Create a Zip file from any files piped in. Requires that
you have the SharpZipLib installed, which is available from
http://www.icsharpcode.net/OpenSource/SharpZipLib/
##
ie:
##
PS >dir *.ps1 | New-ZipFile scripts.zip d:\bin\ICSharpCode.SharpZipLib.dll
PS >"readme.txt" | New-ZipFile docs.zip d:\bin\ICSharpCode.SharpZipLib.dll
##
##

Example 17-6. New-FilesystemHardLink.ps1 (continued)

17.19 Program: Create a ZIP Archive | 335

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

param(
 $zipName = $(throw "Please specify the name of the file to create."),
 $libPath = $(throw "Please specify the path to ICSharpCode.SharpZipLib.dll.")
)

Load the Zip library
[void] [Reflection.Assembly]::LoadFile($libPath)
$namespace = "ICSharpCode.SharpZipLib.Zip.{0}"

Create the Zip File
$zipName =
 $executionContext.SessionState.Path.GetUnresolvedProviderPathFromPSPath($zipName)
$zipFile = New-Object ($namespace -f "ZipOutputStream") ([IO.File]::Create($zipName))
$zipFullName = (Resolve-Path $zipName).Path

[byte[]] $buffer = New-Object byte[] 4096

Go through each file in the input, adding it to the Zip file
specified
foreach($file in $input)
{
 ## Skip the current file if it is the zip file itself
 if($file.FullName -eq $zipFullName)
 {
 continue
 }

 ## Convert the path to a relative path, if it is under the current location
 $replacePath = [Regex]::Escape((Get-Location).Path + "\")
 $zipName = ([string] $file) -replace $replacePath,""

 ## Create the zip entry, and add it to the file
 $zipEntry = New-Object ($namespace -f "ZipEntry") $zipName
 $zipFile.PutNextEntry($zipEntry)

 $fileStream = [IO.File]::OpenRead($file.FullName)
 [ICSharpCode.SharpZipLib.Core.StreamUtils]::Copy($fileStream, $zipFile, $buffer)
 $fileStream.Close()
}

Close the file
$zipFile.Close()

Example 17-7. New-ZipFile.ps1 (continued)

336

Chapter 18CHAPTER 18

The Windows Registry 19

18.0 Introduction
As the configuration store for the vast majority of applications, the registry plays a
central role in system administration. It is also generally hard to manage.

While command-line tools (such as reg.exe) exist to help you work with the registry,
their interfaces are usually inconsistent and confusing. While the Registry Editor
graphical user interface is easy to use, it does not support scripted administration.

PowerShell tackles this problem by exposing the Windows Registry as a navigation
provider—a data source that you navigate and manage in exactly the same way that
you work with the filesystem.

18.1 Navigate the Registry

Problem
You want to navigate and explore the Windows Registry.

Solution
Use the Set-Location just as you would navigate the filesystem to navigate the registry:

PS >Set-Location HKCU:
PS >Set-Location \Software\Microsoft\Windows\CurrentVersion\Run
PS >Get-Location

Path

HKCU:\Software\Microsoft\Windows\CurrentVersion\Run

18.2 View a Registry Key | 337

Discussion
PowerShell lets you navigate the Windows Registry in exactly the same way that you
navigate the filesystem, certificate drives, and other navigation-based providers. Like
these other providers, the registry provider supports the Set-Location cmdlet (with
the standard aliases of sl, cd, and chdir), Push-Location (with the standard alias
pushd), Pop-Location (with the standard alias popd), and more.

For information about how to change registry keys once you get to a registry loca-
tion, see Recipe 18.3, “Modify or Remove a Registry Key Value.” For more informa-
tion about the registry provider, type Get-Help Registry.

See Also
• Recipe 18.3, “Modify or Remove a Registry Key Value”

18.2 View a Registry Key

Problem
You want to view the value of a specific registry key.

Solution
To retrieve the value(s) of a registry key, use the Get-ItemProperty cmdlet, as shown
in Example 18-1.

Example 18-1. Retrieving properties of a registry key

PS >Set-Location HKCU:
PS >Set-Location \Software\Microsoft\Windows\CurrentVersion\Run
PS >Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /ba
 ckground
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
QuickTime Task : "C:\Program Files\QuickTime Alternative\qttask.exe
 " -atboottime
H/PC Connection Agent : "C:\Program Files\Microsoft ActiveSync\wcescomm.exe"

338 | Chapter 18: The Windows Registry

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as
properties of those items. To get the properties of an item, use the Get-ItemProperty
cmdlet. The Get-ItemProperty cmdlet has the standard alias, gp.

Example 18-1 lists all property values associated with that specific key. To retrieve the
value of a specific item, access it as though you would access a property on a .NET
object, or anywhere else in PowerShell:

PS >$item = Get-ItemProperty .
PS >$item.TaskSwitchXp
d:\lee\tools\TaskSwitchXP.exe

If you want to do this all at once, the command looks like:

PS >$runKey = "HKCU:\Software\Microsoft\Windows\CurrentVersion\Run"
PS >(Get-ItemProperty $runKey).TaskSwitchXp
d:\lee\tools\TaskSwitchXP.exe

For more information about the Get-ItemProperty cmdlet, type Get-Help Get-
ItemProperty. For more information about the registry provider, type Get-Help
Registry.

18.3 Modify or Remove a Registry Key Value

Problem
You want to modify or remove a property of a specific registry key.

Solution
To set the value of a registry key, use the Set-ItemProperty cmdlet:

PS >(Get-ItemProperty .).MyProgram
c:\temp\MyProgram.exe
PS >Set-ItemProperty . MyProgram d:\Lee\tools\MyProgram.exe
PS >(Get-ItemProperty .).MyProgram
d:\Lee\tools\MyProgram.exe

To remove the value of a registry key, use the Remove-ItemProperty cmdlet:

PS >Remove-ItemProperty . MyProgram
PS >(Get-ItemProperty .).MyProgram

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as
properties of those items. To change the value of a key property, use the Set-
ItemProperty cmdlet. The Set-ItemProperty cmdlet has the standard alias, sp. To
remove a key property altogether, use the Remove-ItemProperty cmdlet.

18.4 Create a Registry Key Value | 339

As always, use caution when changing information in the registry.
Deleting or changing the wrong item can easily render your system
unbootable.

For more information about the Get-ItemProperty cmdlet, type Get-Help Get-
ItemProperty. For information about the Set-ItemProperty and Remove-ItemProperty
cmdlets, type Get-Help Set-ItemProperty or Get-Help Remove-ItemProperty, respec-
tively. For more information about the registry provider, type Get-Help Registry.

18.4 Create a Registry Key Value

Problem
You want to add a new key value to an existing registry key.

Solution
To add a value to a registry key, use the New-ItemProperty cmdlet. Example 18-2
adds MyProgram.exe to the list of programs that start when the current user logs in.

Example 18-2. Creating new properties on a registry key

PS >New-ItemProperty . -Name MyProgram -Value c:\temp\MyProgram.exe

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Softw
 are\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Softw
 are\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
MyProgram : c:\temp\MyProgram.exe

PS >Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /ba
 ckground
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe

340 | Chapter 18: The Windows Registry

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as
properties of those items. To create a key property, use the New-ItemProperty cmdlet.

For more information about the New-ItemProperty cmdlet, type Get-Help New-
ItemProperty. For more information about the registry provider, type Get-Help
Registry.

18.5 Remove a Registry Key

Problem
You want to remove a registry key and all its properties.

Solution
To remove a registry key, use the Remove-Item cmdlet:

PS >dir

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\
Microsoft\Windows\CurrentVersion\Run

SKC VC Name Property
--- -- ---- --------
 0 0 Spyware {}

PS >Remove-Item Spyware

Discussion
As mentioned in Recipe 18.4, “Create a Registry Key Value,” the registry provider
lets you remove items and containers with the Remove-Item cmdlet. The Remove-Item
cmdlet has the standard aliases rm, rmdir, del, erase, and rd.

ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
QuickTime Task : "C:\Program Files\QuickTime Alternative\qttask.exe
 " -atboottime
H/PC Connection Agent : "C:\Program Files\Microsoft ActiveSync\wcescomm.ex
 e"
MyProgram : c:\temp\MyProgram.exe

Example 18-2. Creating new properties on a registry key (continued)

18.6 Add a Site to an Internet Explorer Security Zone | 341

As always, use caution when changing information in the registry.
Deleting or changing the wrong item can easily render your system
unbootable.

As in the filesystem, the Remove-Item cmdlet lets you specify multiple files through its
Path, Include, Exclude, and Filter parameters. For information on how to use these
parameters effectively, see Recipe 17.5, “Find Files That Match a Pattern.”

For more information about the Remove-Item cmdlet, type Get-Help Remove-Item. For
more information about the registry provider, type Get-Help Registry.

See Also
• Recipe 17.5, “Find Files That Match a Pattern”

• Recipe 18.4, “Create a Registry Key Value”

18.6 Add a Site to an Internet Explorer Security Zone

Problem
You want to add a site to a specific Internet Explorer security zone.

Solution
To create the registry keys and properties required to add a site to a specific security
zone, use the New-Item and New-ItemProperty cmdlets. Example 18-3 adds www.
example.com to the list of sites trusted by Internet Explorer.

Discussion
One task that requires modifying data in the registry is working with Internet
Explorer to add and remove sites from its different security zones.

Internet Explorer stores its zone mapping information in the registry at HKCU:\
Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\Domains.
Below that key, Explorer stores the domain name (such as leeholmes.com) with the

Example 18-3. Adding www.example.com to the list of trusted sites in Internet Explorer

Set-Location "HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings"
Set-Location ZoneMap\Domains
New-Item example.com
Set-Location example.com
New-Item www
Set-Location www
New-ItemProperty . -Name http -Value 2 -Type DWORD

342 | Chapter 18: The Windows Registry

hostname (such as www) as a subkey of that one (see Figure 18-1). In the host key,
Explorer stores a property (such as http) with a DWORD value that corresponds to the
zone identifier.

The Internet Explorer zone identifiers are:

0. My Computer
1. Local intranet
2. Trusted sites
3. Internet
4. Restricted sites

When Internet Explorer is configured in its Enhanced Security Configuration mode,
you must also update entries under the EscDomains key.

Once a machine has enabled Internet Explorer’s Enhanced Security
Configuration, those settings persist even after removing Enhanced
Security Configuration. The following commands allow your machine
to trust UNC paths again:

Set-Location "HKCU:\Software\Microsoft\Windows\"
Set-Location "CurrentVersion"

Set-Location "Internet Settings"

Set-ItemProperty ZoneMap UNCAsIntranet -Type DWORD 1

Set-ItemProperty ZoneMap IntranetName -Type DWORD 1

Figure 18-1. Internet Explorer zone configuration

18.7 Modify Internet Explorer Settings | 343

To remove the zone mapping for a specific domain, use the Remove-Item cmdlet:

PS >Get-ChildItem

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\Software\Mi
crosoft\Windows\CurrentVersion\Internet Settings\ZoneMap\Domains

SKC VC Name Property
--- -- ---- --------
 1 0 example.com {}

PS >Remove-Item -Recurse example.com
PS >Get-ChildItem
PS >

For more information about using the Internet Explorer registry entries to configure
security zones, see the Microsoft KB article “Description of Internet Explorer Secu-
rity Zones Registry Entries” at http://support.microsoft.com/kb/182569. For more
information about managing Internet Explorer’s Enhanced Security Configuration,
search for it on http://technet.microsoft.com.

For more information about modifying data in the registry, see Recipe 18.3, “Modify
or Remove a Registry Key Value.”

See Also
• Recipe 18.3, “Modify or Remove a Registry Key Value”

18.7 Modify Internet Explorer Settings

Problem
You want to modify Internet Explorer’s configuration options.

Solution
To modify the Internet Explorer configuration registry keys, use the Set-
ItemProperty cmdlet. For example, to update the proxy:

Set-Location "HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings"
Set-ItemProperty . -Name ProxyServer -Value http://proxy.example.com
Set-ItemProperty . -Name ProxyEnable -Value 1

Discussion
Internet Explorer stores its main configuration information as properties on the reg-
istry key HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings. To
change these properties, use the Set-ItemProperty cmdlet as demonstrated in the
solution.

344 | Chapter 18: The Windows Registry

Another common set of properties to tweak are the configuration parameters that
define a security zone. An example of this is to prevent scripts from running in the
Restricted Sites zone. For each zone, Internet Explorer stores this information as
properties of the registry key HKCU:\Software\Microsoft\Windows\CurrentVersion\
Internet Settings\Zones\<Zone>, where <Zone> represents the zone identifier (0, 1, 2,
3, or 4) to manage.

The Internet Explorer zone identifiers are:

0. My Computer
1. Local intranet
2. Trusted sites
3. Internet
4. Restricted sites

The names of the properties in this key are not designed for human consumption, as
they carry illuminating titles such as 1A04 and 1809. While not well-named, you can
still script them.

For more information about using the Internet Explorer registry settings to configure
security zones, see the Microsoft KB article “Description of Internet Explorer Secu-
rity Zones Registry Entries” at http://support.microsoft.com/kb/182569.

For more information about modifying data in the registry, see Recipe 18.3, “Modify
or Remove a Registry Key Value.”

See Also
• Recipe 18.3, “Modify or Remove a Registry Key Value”

18.8 Program: Search the Windows Registry

Discussion
While the Windows Registry Editor is useful for searching the registry, it sometimes
may not provide the power you need. For example, the registry editor does not sup-
port searches with wildcards or regular expressions.

In the filesystem, we have the Select-String cmdlet to search files for content.
PowerShell does not have that for other stores, but we can write a script to do it.
The key here is to think of registry key values like you think of content in a file:

• Directories have items; items have content.

• Registry keys have properties; properties have values.

Example 18-4 goes through all registry keys (and their values) for a search term and
returns information about the match.

18.8 Program: Search the Windows Registry | 345

Example 18-4. Search-Registry.ps1

##
##
Search-Registry.ps1
##
Search the registry for keys or properties that match a specific value.
##
ie:
##
PS >Set-Location HKCU:\Software\Microsoft\
PS >Search-Registry Run
##
##

param([string] $searchText = $(throw "Please specify text to search for."))

Helper function to create a new object that represents
a registry match from this script
function New-RegistryMatch
{
 param($matchType, $keyName, $propertyName, $line)

 $registryMatch = New-Object PsObject
 $registryMatch | Add-Member NoteProperty MatchType $matchType
 $registryMatch | Add-Member NoteProperty KeyName $keyName
 $registryMatch | Add-Member NoteProperty PropertyName $propertyName
 $registryMatch | Add-Member NoteProperty Line $line

 $registryMatch
}

Go through each item in the registry
foreach($item in Get-ChildItem -Recurse -ErrorAction SilentlyContinue)
{
 ## Check if the key name matches
 if($item.Name -match $searchText)
 {
 New-RegistryMatch "Key" $item.Name $null $item.Name
 }

 ## Check if a key property matches
 foreach($property in (Get-ItemProperty $item.PsPath).PsObject.Properties)
 {
 ## Skip the property if it was one PowerShell added
 if(($property.Name -eq "PSPath") -or ($property.Name -eq "PSChildName"))
 {
 continue
 }

 ## Search the text of the property
 $propertyText = "$($property.Name)=$($property.Value)"
 if($propertyText -match $searchText)
 {

346 | Chapter 18: The Windows Registry

For more information about running scripts, see also Recipe 1.1, “Run Programs,
Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

18.9 Get the ACL of a Registry Key

Problem
You want to retrieve the ACL of a registry key.

Solution
To retrieve the ACL of a registry key, use the Get-Acl cmdlet:

PS >Get-Acl HKLM:\Software

Path Owner Access
---- ----- ------
Microsoft.PowerShell.... BUILTIN\Administrators CREATOR OWNER Allow ...

Discussion
As mentioned in Recipe 17.15, “Get the ACL of a File or Directory,” the Get-Acl
cmdlet retrieves the security descriptor of an item. This cmdlet doesn’t only work
against the registry, however. Any provider (for example, the filesystem provider)
that supports the concept of security descriptors also supports the Get-Acl cmdlet.

The Get-Acl cmdlet returns an object that represents the security descriptor of the
item and is specific to the provider that contains the item. In the registry provider, this
returns a .NET System.Security.AccessControl.RegistrySecurity object that you can
explore for further information. For an example of a script that works with ACLs, see
Recipe 17.15, “Get the ACL of a File or Directory.”

For more information about the Get-Acl command, type Get-Help Get-Acl. For more
information about working with classes from the .NET Framework, see Recipe 3.4,
“Work with .NET Objects.”

 New-RegistryMatch "Property" $item.Name $property.Name $propertyText
 }
 }
}

Example 18-4. Search-Registry.ps1 (continued)

18.10 Set the ACL of a Registry Key | 347

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 17.15, “Get the ACL of a File or Directory”

18.10 Set the ACL of a Registry Key

Problem
You want to change the ACL of a registry key.

Solution
To set the ACL on a registry key, use the Set-Acl cmdlet. This example grants an
account write access to a registry key under HKLM:\Software. This is especially useful
for programs that write to administrator-only regions of the registry, which prevents
them from running under a nonadministrator account.

cd HKLM:\Software\MyProgram
$acl = Get-Acl .
$arguments = "LEE-DESK\Lee","FullControl","Allow"
$accessRule = New-Object System.Security.AccessControl.RegistryAccessRule $arguments
$acl.SetAccessRule($accessRule)
$acl | Set-Acl .

Discussion
As mentioned in Recipe 17.16, “Set the ACL of a File or Directory,” the Set-Acl
cmdlet sets the security descriptor of an item. This cmdlet doesn’t only work against
the registry, however. Any provider (for example, the filesystem provider) that sup-
ports the concept of security descriptors also supports the Set-Acl cmdlet.

The Set-Acl cmdlet requires that you provide it with an ACL to apply to the item.
While it is possible to construct the ACL from scratch, it is usually easiest to retrieve
it from the item beforehand (as demonstrated in the solution). To retrieve the ACL,
use the Get-Acl cmdlet. Once you’ve modified the access control rules on the ACL,
simply pipe them to the Set-Acl cmdlet to make them permanent.

In the solution, the $arguments list that we provide to the RegistryAccessRule con-
structor explicitly sets an Allow rule on the Lee account of the LEE-DESK computer for
FullControl permission. For more information about working with classes (such as
the RegistryAccessRule class) from the .NET Framework, see Recipe 3.4, “Work
with .NET Objects.”

Although the Set-Acl command is powerful, you may already be familiar with com-
mand-line tools that offer similar functionality (such as SubInAcl.exe). You can of
course continue to use these tools from PowerShell.

348 | Chapter 18: The Windows Registry

For more information about the Set-Acl cmdlet, type Get-Help Set-Acl. For more
information about the Get-Acl cmdlet, see Recipe 18.9, “Get the ACL of a Registry
Key.”

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 17.16, “Set the ACL of a File or Directory”

• Recipe 18.9, “Get the ACL of a Registry Key”

18.11 Work with the Registry of a Remote Computer

Problem
You want to work with the registry keys and values of a remote computer.

Solution
To work with the registry of a remote computer, use the scripts provided in this
chapter: Get-RemoteRegistryChildItem, Get-RemoteRegistryProperty, and Set-
RemoteRegistryProperty. These scripts require that the remote computer has the
remote registry service enabled and running. Example 18-5 updates the PowerShell
execution policy of a remote machine.

Example 18-5. Setting the PowerShell execution policy of a remote machine

PS >$registryPath = "HKLM:\Software\Microsoft\PowerShell\1"
PS >Get-RemoteRegistryChildItem LEE-DESK $registryPath

SKC VC Name Property
--- -- ---- --------
 0 1 1033 {Install}
 0 5 PowerShellEngine {ApplicationBase, ConsoleHostAss...
 2 0 PowerShellSnapIns {}
 1 0 ShellIds {}

PS >Get-RemoteRegistryChildItem LEE-DESK $registryPath\ShellIds

SKC VC Name Property
--- -- ---- --------
 0 2 Microsoft.PowerShell {Path, ExecutionPolicy}

PS >
PS >$registryPath = "HKLM:\Software\Microsoft\PowerShell\1\" +
>> "ShellIds\Microsoft.PowerShell"
>>

18.12 Program: Get Registry Items from Remote Machines | 349

Discussion
Although this specific task is perhaps better solved through PowerShell’s Group Pol-
icy support, it demonstrates a useful scenario that includes both remote registry
exploration and modification.

For more information about the Get-RemoteRegistryChildItem, Get-
RemoteRegistryProperty, and Set-RemoteRegistryProperty scripts, see Recipe 18.12,
“Program: Get Registry Items from Remote Machines,” Recipe 18.13, “Program: Get
Properties of Remote Registry Keys,” and Recipe 18.14, “Program: Set Properties of
Remote Registry Keys.”

See Also
• Recipe 18.12, “Program: Get Registry Items from Remote Machines”

• Recipe 18.13, “Program: Get Properties of Remote Registry Keys”

• Recipe 18.14, “Program: Set Properties of Remote Registry Keys”

18.12 Program: Get Registry Items from Remote
Machines

Discussion
Although PowerShell does not directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

PS >Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

ExecutionPolicy

Unrestricted

PS >Set-RemoteRegistryKeyProperty LEE-DESK $registryPath `
>> "ExecutionPolicy" "RemoteSigned"
>>
PS >Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

ExecutionPolicy

RemoteSigned

Example 18-5. Setting the PowerShell execution policy of a remote machine (continued)

350 | Chapter 18: The Windows Registry

Example 18-6 lets you list child items in a remote registry key, much like you do on
the local computer. In order for this script to succeed, the target computer must have
the remote registry service enabled and running.

Example 18-6. Get-RemoteRegistryChildItem.ps1

##
##
Get-RemoteRegistryChildItem.ps1
##
Get the list of subkeys below a given key.
##
ie:
##
PS >Get-RemoteRegistryChildItem LEE-DESK HKLM:\Software
##
##

param(
 $computer = $(throw "Please specify a computer name."),
 $path = $(throw "Please specify a registry path")
)

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "LocalMachine", $computer)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey
 ("CurrentUser", $computer)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key
$key = $baseKey.OpenSubKey($matches[1])

Retrieve all of its children
foreach($subkeyName in $key.GetSubKeyNames())
{
 ## Open the subkey
 $subkey = $key.OpenSubKey($subkeyName)

 ## Add information so that PowerShell displays this key like regular
 ## registry key
 $returnObject = [PsObject] $subKey

18.13 Program: Get Properties of Remote Registry Keys | 351

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

18.13 Program: Get Properties of Remote Registry Keys

Discussion
Although PowerShell does not directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

Example 18-7 lets you get the properties (or a specific property) from a given remote
registry key. In order for this script to succeed, the target computer must have the
remote registry service enabled and running.

 $returnObject | Add-Member NoteProperty PsChildName $subkeyName
 $returnObject | Add-Member NoteProperty Property $subkey.GetValueNames()

 ## Output the key
 $returnObject

 ## Close the child key
 $subkey.Close()
}

Close the key and base keys
$key.Close()
$baseKey.Close()

Example 18-7. Get-RemoteRegistryKeyProperty.ps1

##
##
Get-RemoteRegistryKeyProperty.ps1
##
Get the value of a remote registry key property
##
ie:
##
PS >$registryPath =
"HKLM:\software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"
PS >Get-RemoteRegistryKeyProperty LEE-DESK $registryPath "ExecutionPolicy"
##

Example 18-6. Get-RemoteRegistryChildItem.ps1 (continued)

352 | Chapter 18: The Windows Registry

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

##

param(
 $computer = $(throw "Please specify a computer name."),
 $path = $(throw "Please specify a registry path"),
 $property = "*"
)

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "LocalMachine", $computer)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "CurrentUser", $computer)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key
$key = $baseKey.OpenSubKey($matches[1])
$returnObject = New-Object PsObject

Go through each of the properties in the key
foreach($keyProperty in $key.GetValueNames())
{
 ## If the property matches the search term, add it as a
 ## property to the output
 if($keyProperty -like $property)
 {
 $returnObject |
 Add-Member NoteProperty $keyProperty $key.GetValue($keyProperty)
 }
}

Return the resulting object
$returnObject

Close the key and base keys
$key.Close()
$baseKey.Close()

Example 18-7. Get-RemoteRegistryKeyProperty.ps1 (continued)

18.14 Program: Set Properties of Remote Registry Keys | 353

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

18.14 Program: Set Properties of Remote Registry Keys

Discussion
Although PowerShell does not directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

Example 18-8 lets you set the value of a property on a given remote registry key. In
order for this script to succeed, the target computer must have the remote registry
service enabled and running.

Example 18-8. Set-RemoteRegistryKeyProperty.ps1

##
##
Set-RemoteRegistryKeyProperty.ps1
##
Set the value of a remote registry key property
##
ie:
##
PS >$registryPath =
"HKLM:\software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"
PS >Set-RemoteRegistryKeyProperty LEE-DESK $registryPath `
"ExecutionPolicy" "RemoteSigned"
##
##

param(
 $computer = $(throw "Please specify a computer name."),
 $path = $(throw "Please specify a registry path"),
 $property = $(throw "Please specify a property name"),
 $propertyValue = $(throw "Please specify a property value")
)

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey
 ("LocalMachine", $computer)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey
 ("CurrentUser", $computer)
}

354 | Chapter 18: The Windows Registry

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

18.15 Discover Registry Settings for Programs

Problem
You want to automate the configuration of a program, but that program does not
document its registry configuration settings.

Solution
To discover a registry setting for a program, use Sysinternals’ Process Monitor to
observe registry access by that program. Process Monitor is available from http://
www.microsoft.com/technet/sysinternals/FileAndDisk/processmonitor.mspx.

Discussion
In an ideal world, all programs would fully support command-line administration
and configuration through PowerShell cmdlets. Many programs do not, however, so
the solution is to look through their documentation in the hope that they list the reg-
istry keys and properties that control their settings. While many programs document
their registry configuration settings, many still do not.

Although these programs may not document their registry settings, you can usually
observe their registry access activity to determine the registry paths they use. To illus-
trate this, we will use the Sysinternals’ Process Monitor to discover PowerShell’s exe-
cution policy configuration keys. Although PowerShell documents these keys and
makes its automated configuration a breeze, it illustrates the general technique.

else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key and set its value
$key = $baseKey.OpenSubKey($matches[1], $true)
$key.SetValue($property, $propertyValue)

Close the key and base keys
$key.Close()
$baseKey.Close()

Example 18-8. Set-RemoteRegistryKeyProperty.ps1 (continued)

18.15 Discover Registry Settings for Programs | 355

Launch and configure Process Monitor

Once you’ve downloaded Process Monitor, the first step is to filter its output to
include only the program you are interested in. By default, Process Monitor logs
almost all registry and file activity on the system.

First, launch Process Monitor, and then press Ctrl-E (or click the magnifying glass
icon) to temporarily prevent it from capturing any data (see Figure 18-2). Next, press
Ctrl-X (or click the white sheet with an eraser icon) to clear the extra information
that it captured automatically. Finally, drag the target icon and drop it on top of the
application in question. You can press Ctrl-L (or click the funnel icon) to see the fil-
ter that Process Monitor now applies to its output.

Prepare to manually set the configuration option

Next, prepare to manually set the program’s configuration option. Usually, this
means typing and clicking all the property settings, but just not clicking OK or
Apply. For this PowerShell example, type the Set-ExecutionPolicy command line,
but do not press Enter (see Figure 18-3).

Figure 18-2. Process Monitor ready to capture

356 | Chapter 18: The Windows Registry

Tell Process Monitor to begin capturing information

Switch to the Process Monitor window, and then press Ctrl-E (or click the magnify-
ing glass icon). Process Monitor now captures all registry access for the program in
question.

Manually set the configuration option

Click OK, Apply, or whatever action it takes to actually complete the program’s con-
figuration. For the PowerShell example, this means pressing Enter.

Tell Process Monitor to stop capturing information

Switch again to the Process Monitor window, and then press Ctrl-E (or click the
magnifying glass icon). Process Monitor now no longer captures the application’s
activity.

Review the capture logs for registry modification

The Process Monitor window now shows all registry keys that the application inter-
acted with when it applied its configuration setting.

Press Ctrl-F (or click the binoculars icon); then search for RegSetValue. Process Mon-
itor highlights the first modification to a registry key, as shown in Figure 18-4.

Press Enter (or double-click the highlighted row) to see the details about this specific
registry modification. In this example, we can see that PowerShell changed the value
of the ExecutionPolicy property (under HKLM:\Software\Microsoft\PowerShell\1\
ShellIds\Microsoft.PowerShell) to RemoteSigned. Press F3 to see the next entry that
corresponds to a registry modification.

Automate these registry writes

Now that you know all registry writes that the application performed when it
updated its settings, judgment and experimentation will help you determine which
modifications actually represent this setting. Since PowerShell only performed one
registry write (to a key that very obviously represents the execution policy), the
choice is pretty clear in this example.

Once you’ve discovered the registry keys, properties, and values that the application
uses to store its configuration data, you can use the techniques discussed in Recipe

Figure 18-3. Preparing to apply the configuration option

18.15 Discover Registry Settings for Programs | 357

18.3, “Modify or Remove a Registry Key Value” to automate these configuration set-
tings. For example:

PS >$key = "HKLM:\Software\Microsoft\PowerShell\1\" +
>> "ShellIds\Microsoft.PowerShell"
>>
PS >Set-ItemProperty $key ExecutionPolicy AllSigned
PS >Get-ExecutionPolicy
AllSigned
PS >Set-ItemProperty $key ExecutionPolicy RemoteSigned
PS >Get-ExecutionPolicy
RemoteSigned

See Also
• Recipe 18.3, “Modify or Remove a Registry Key Value”

Figure 18-4. Process Monitor’s registry access detail

358

Chapter 19CHAPTER 19

Comparing Data 20

19.0 Introduction
When working in PowerShell, it is common to work with collections of objects. Most
PowerShell commands generate objects, as do many of the methods that you work
with in the .NET Framework. To help work with these object collections, Power-
Shell introduces the Compare-Object cmdlet. The Compare-Object cmdlet provides
functionality similar to well-known diff commands, but with an object-oriented
flavor.

19.1 Compare the Output of Two Commands

Problem
You want to compare the output of two commands.

Solution
To compare the output of two commands, store the output of each command in
variables, and then use the Compare-Object cmdlet to compare those variables:

PS >notepad
PS >$processes = Get-Process
PS >Stop-Process -ProcessName Notepad
PS >$newProcesses = Get-Process
PS >Compare-Object $processes $newProcesses

InputObject SideIndicator
----------- -------------
System.Diagnostics.Process (notepad) <=

19.2 Determine the Differences Between Two Files | 359

Discussion
The solution shows how to determine which processes have exited between the two
calls to Get-Process. The SideIndicator of <= tells us that the process was present in
the left collection ($processes) but not in the right ($newProcesses).

For more information about the Compare-Object cmdlet, type Get-Help Compare-
Object.

19.2 Determine the Differences Between Two Files

Problem
You want to determine the differences between two files.

Solution
To determine simple differences in the content of each file, store their content in
variables, and then use the Compare-Object cmdlet to compare those variables:

PS >"Hello World" > c:\temp\file1.txt
PS >"Hello World" > c:\temp\file2.txt
PS >"More Information" >> c:\temp\file2.txt
PS >$content1 = Get-Content c:\temp\file1.txt
PS >$content2 = Get-Content c:\temp\file2.txt
PS >Compare-Object $content1 $content2

InputObject SideIndicator
----------- -------------
More Information =>

Discussion
The primary focus of the Compare-Object cmdlet is to compare two unordered sets of
objects. Although those sets of objects can be strings (as in the content of two files),
the output of Compare-Object when run against files is usually counterintuitive due to
the content losing its order.

When comparing large files (or files where the order of comparison matters), you can
still use traditional file comparison tools such as diff.exe or the WinDiff application
that comes with both the Windows Support Tools and Visual Studio.

For more information about the Compare-Object cmdlet, type Get-Help Compare-
Object.

360 | Chapter 19: Comparing Data

19.3 Verify Integrity of File Sets

Problem
You want to determine whether any files have been modified or damaged in a set of
files.

Solution
To verify the integrity of file sets, use the Get-FileHash script provided in Recipe
17.10, “Program: Get the MD5 or SHA1 Hash of a File” to generate the signatures
of those files in question. Do the same for the files on a known good system. Finally,
use the Compare-Object cmdlet to compare those two sets.

Discussion
To generate the information from the files in question, use a command like:

dir C:\Windows\System32\WindowsPowerShell\v1.0 | Get-FileHash |
 Export-CliXml c:\temp\PowerShellHashes.clixml

This command gets the hash values of the files from C:\Windows\System32\
WindowsPowerShell\v1.0, and uses the Export-CliXml cmdlet to store that data in a
file.

Transport this file to a system with files in a known good state, and then import the
data from that file.

$otherHashes = Import-CliXml c:\temp\PowerShellHashes.clixml

You can also map a network drive to the files in question and skip the
export, transport, and import steps altogether:

net use x: \\lee-desk\c$\Windows\System32\WindowsPowerShell\
v1.0

$otherHashes = dir x: | Get-FileHash

Generate the information from the files you know are in a good state:

$knownHashes = dir C:\Windows\System32\WindowsPowerShell\v1.0 |
 Get-FileHash

Finally, use the Compare-Object cmdlet to detect any differences:

Compare-Object $otherHashes $knownHashes -Property Path,HashValue

If there are any differences, the Compare-Object cmdlet displays them in a list, as
shown in Example 19-1.

Example 19-1. The Compare-Object cmdlet showing differences between two files

PS >Compare-Object $otherHashes $knownHashes -Property Path,HashValue

Path HashValue SideIndicator

19.3 Verify Integrity of File Sets | 361

For more information about the Compare-Object cmdlet, type Get-Help Compare-
Object. For more information about the Export-CliXml and Import-CliXml cmdlets,
type Get-Help Export-CliXml and Get-Help Import-CliXml, respectively.

See Also
• Recipe 17.10, “Program: Get the MD5 or SHA1 Hash of a File”

---- --------- -------------
system.management.aut... 247F291CCDA8E669FF9FA... =>
system.management.aut... 5A68BC5819E29B8E3648F... <=

PS >Compare-Object $otherHashes $knownHashes -Property Path,HashValue |
>> Select-Object Path
>>

Path

system.management.automation.dll-help.xml
system.management.automation.dll-help.xml

Example 19-1. The Compare-Object cmdlet showing differences between two files (continued)

362

Chapter 20CHAPTER 20

Event Logs 21

20.0 Introduction
Event logs form the core of most monitoring and diagnosis on Windows. To sup-
port this activity, PowerShell offers the Get-EventLog cmdlet to let you query and
work with event log data on a system. In addition to PowerShell’s built-in Get-
EventLog cmdlet, its support for the .NET Framework means that you can access
event logs on remote computers, add entries to event logs, and even create and
delete event logs.

20.1 List All Event Logs

Problem
You want to determine which event logs exist on a system.

Solution
To list event logs on a system, use the –List parameter of the Get-EventLog cmdlet:

PS >Get-EventLog -List

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 512 0 OverwriteAsNeeded 2,157 ADAM (Test)
 512 7 OverwriteOlder 2,090 Application
 512 7 OverwriteOlder 0 Internet Explorer
 8,192 45 OverwriteOlder 0 Media Center
 512 7 OverwriteOlder 0 ScriptEvents
 512 7 OverwriteOlder 2,368 System
 15,360 0 OverwriteAsNeeded 0 Windows PowerShell

20.2 Get the Newest Entries from an Event Log | 363

Discussion
The –List parameter of the Get-EventLog cmdlet generates a list of the event logs reg-
istered on the system. Like the output of nearly all PowerShell commands, these
event logs are fully featured .NET objects—in this case, objects of the .NET System.
Diagnostics.EventLog type. For information on how to use these objects to write
entries to an event log, see Recipe 20.8, “Write to an Event Log.”

Although the heading of the Get-EventLog output shows a table head-
ing called Name, the actual property you need to use in Where-Object
(and similar commands) is Log.

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog.

See Also
• Recipe 20.8, “Write to an Event Log”

20.2 Get the Newest Entries from an Event Log

Problem
You want to retrieve the most recent entries from an event log.

Solution
To retrieve the most recent entries from an event log, use the –Newest parameter of
the Get-EventLog cmdlet, as shown in Example 20-1.

Example 20-1. Retrieving the 10 newest entries from the System event log

PS >Get-EventLog System -Newest 10 | Format-Table Index,Source,Message -A

Index Source Message
----- ------ -------
 2922 Service Control Manager The Background Intelligent Transfer Servi...
 2921 Service Control Manager The Background Intelligent Transfer Servi...
 2920 Service Control Manager The Logical Disk Manager Administrative S...
 2919 Service Control Manager The Logical Disk Manager Administrative S...
 2918 Service Control Manager The Logical Disk Manager Administrative S...
 2917 TermServDevices Driver Microsoft XPS Document Writer requ...
 2916 Print Printer Microsoft Office Document Image W...
 2915 Print Printer Microsoft Office Document Image W...
 2914 Print Printer Microsoft Office Document Image W...
 2913 TermServDevices Driver Microsoft Shared Fax Driver requir...

364 | Chapter 20: Event Logs

Discussion
The –Newest parameter of the Get-EventLog cmdlet retrieves the most recent entries
from an event log that you specify. To list the event logs available on the system, see
Recipe 20.1, “List All Event Logs.”

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog.

See Also
• Recipe 20.1, “List All Event Logs”

20.3 Find Event Log Entries with Specific Text

Problem
You want to retrieve all event log entries that contain a given term.

Solution
To find specific event log entries, use the Get-EventLog cmdlet to retrieve the items,
and then pipe them to the Where-Object cmdlet to filter them, as shown in
Example 20-2.

Discussion
Since the Get-EventLog cmdlet retrieves rich objects that represent event log entries,
you can pipe them to the Where-Object cmdlet for equally rich filtering.

Example 20-2. Searching the event log for entries that mention the term “disk”

PS >Get-EventLog System | Where-Object { $_.Message -match "disk" }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2920 May 06 09:18 Info Service Control M... 7036 The Logical Disk...
 2919 May 06 09:17 Info Service Control M... 7036 The Logical Disk...
 2918 May 06 09:17 Info Service Control M... 7035 The Logical Disk...
 2884 May 06 00:28 Erro sr 1 The System Resto...
 2333 Apr 03 00:16 Erro Disk 11 The driver detec...
 2332 Apr 03 00:16 Erro Disk 11 The driver detec...
 2131 Mar 27 13:59 Info Service Control M... 7036 The Logical Disk...
 2127 Mar 27 12:48 Info Service Control M... 7036 The Logical Disk...
 2126 Mar 27 12:48 Info Service Control M... 7035 The Logical Disk...
 2123 Mar 27 12:31 Info Service Control M... 7036 The Logical Disk...
 2122 Mar 27 12:29 Info Service Control M... 7036 The Logical Disk...
 2121 Mar 27 12:29 Info Service Control M... 7035 The Logical Disk...

20.4 Retrieve a Specific Event Log Entry | 365

By default, PowerShell’s default table formatting displays a summary of event log
entries. If you are searching the event log message, however, you are probably inter-
ested in seeing more details about the message itself. In this case, use the Format-List
cmdlet to format these entries in a more detailed list view. Example 20-3 shows this
view.

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog.
For more information about filtering command output, see Recipe 2.1, “Filter Items
in a List or Command Output.”

See Also
• Recipe 2.1, “Filter Items in a List or Command Output”

20.4 Retrieve a Specific Event Log Entry

Problem
You want to retrieve a specific event log entry.

Solution
To retrieve a specific event log entry, use the Get-EventLog cmdlet to retrieve the
entries in the event log, and then pipe them to the Where-Object cmdlet to filter them
to the one you are looking for.

Example 20-3. A detailed list view of an event log entry

PS >Get-EventLog System | Where-Object { $_.Message -match "disk" } |
>> Format-List
>>

Index : 2920
EntryType : Information
EventID : 7036
Message : The Logical Disk Manager Administrative Service servi
 ce entered the stopped state.
Category : (0)
CategoryNumber : 0
ReplacementStrings : {Logical Disk Manager Administrative Service, stopped
 }
Source : Service Control Manager
TimeGenerated : 5/6/2007 9:18:25 AM
TimeWritten : 5/6/2007 9:18:25 AM
UserName :

Index : 2919
(...)

366 | Chapter 20: Event Logs

PS >Get-EventLog System | Where-Object { $_.Index –eq 2920 }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2920 May 06 09:18 Info Service Control M... 7036 The Logical Disk...

Discussion
If you’ve listed the items in an event log or searched it for entries that have a mes-
sage with specific text, you often want to get more details about a specific event log
entry.

Since the Get-EventLog cmdlet retrieves rich objects that represent event log entries,
you can pipe them to the Where-Object cmdlet for equally rich filtering.

By default, PowerShell’s default table formatting displays a summary of event log
entries. If you are retrieving a specific entry, however, you are probably interested in
seeing more details about the entry. In this case, use the Format-List cmdlet to for-
mat these entries in a more detailed list view, as shown in Example 20-4.

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog.
For more information about filtering command output, see Recipe 2.1, “Filter Items
in a List or Command Output.”

See Also
• Recipe 2.1, “Filter Items in a List or Command Output”

Example 20-4. A detailed list view of an event log entry

PS > Get-EventLog System | Where-Object { $_.Index –eq 2920 } |
>> Format-List
>>

Index : 2920
EntryType : Information
EventID : 7036
Message : The Logical Disk Manager Administrative Service servi
 ce entered the stopped state.
Category : (0)
CategoryNumber : 0
ReplacementStrings : {Logical Disk Manager Administrative Service, stopped
 }
Source : Service Control Manager
TimeGenerated : 5/6/2007 9:18:25 AM
TimeWritten : 5/6/2007 9:18:25 AM
UserName :

Index : 2919
(...)

20.5 Find Event Log Entries by Their Frequency | 367

20.5 Find Event Log Entries by Their Frequency

Problem
You want to find the event log entries that occur most frequently.

Solution
To find event log entries by frequency, use the Get-EventLog cmdlet to retrieve the
entries in the event log, and then pipe them to the Group-Object cmdlet to group
them by their message.

PS >Get-EventLog System | Group-Object Message

Count Name Group
----- ---- -----
 23 The Background Intelli... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 23 The Background Intelli... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 161 Driver Microsoft XPS D... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

Discussion
The Group-Object cmdlet is a useful way to determine which events occur most fre-
quently on your system. It also provides a useful way to summarize the information
in the event log.

If you want to learn more information about the items in a specific group, use the
Where-Object cmdlet. Since we used the Message property in the Group-Object
cmdlet, we need to filter on Message in the Where-Object cmdlet. For example, to
learn more about the entries relating to the Microsoft XPS Driver (from the scenario
in the solution):

PS >Get-EventLog System |
>> Where-Object { $_.Message -like "Driver Microsoft XPS*" }
>>

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2917 May 06 09:13 Erro TermServDevices 1111 Driver Microsoft...
 2883 May 05 10:40 Erro TermServDevices 1111 Driver Microsoft...
 2877 May 05 08:10 Erro TermServDevices 1111 Driver Microsoft...
(...)

If grouping by message doesn’t provide useful information, you can group by any
other property—such as source:

368 | Chapter 20: Event Logs

PS >Get-EventLog Application | Group-Object Source

Count Name Group
----- ---- -----
 4 Application {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK}
 191 Media Center Scheduler {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 1082 MSSQL$SQLEXPRESS {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

If you’ve listed the items in an event log or searched it for entries that have a mes-
sage with specific text, you often want to get more details about a specific event log
entry.

By default, PowerShell’s default table formatting displays a summary of event log
entries. If you are retrieving a specific entry, however, you are probably interested in
seeing more details about the entry. In this case, use the Format-List cmdlet to for-
mat these entries in a more detailed list view, as shown in Example 20-5.

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog.
For more information about filtering command output, see Recipe 2.1, “Filter Items
in a List or Command Output.” For more information about the Group-Object
cmdlet, type Get-Help Group-Object.

See Also
• Recipe 2.1, “Filter Items in a List or Command Output”

Example 20-5. A detailed list view of an event log entry

PS >Get-EventLog System | Where-Object { $_.Index –eq 2917 } |
>> Format-List
>>

Index : 2917
EntryType : Error
EventID : 1111
Message : Driver Microsoft XPS Document Writer required for pri
 nter Microsoft XPS Document Writer is unknown. Contac
 t the administrator to install the driver before you
 log in again.
Category : (0)
CategoryNumber : 0
ReplacementStrings : {Microsoft XPS Document Writer, Microsoft XPS Documen
 t Writer}
Source : TermServDevices
TimeGenerated : 5/6/2007 9:13:31 AM
TimeWritten : 5/6/2007 9:13:31 AM
UserName :

20.7 Create or Remove an Event Log | 369

20.6 Back Up an Event Log

Problem
You want to store the information in an event log in a file for storage or later review.

Solution
To store event log entries in a file, use the Get-EventLog cmdlet to retrieve the entries
in the event log, and then pipe them to the Export-CliXml cmdlet to store them in a
file.

Get-EventLog System | Export-CliXml c:\temp\SystemLogBackup.clixml

Discussion
Once you’ve exported the events from an event log, you can archive them, or use the
Import-CliXml cmdlet to review them on any machine that has PowerShell installed:

PS >$archivedLogs = Import-CliXml c:\temp\SystemLogBackup.clixml
PS >$archivedLogs | Group Source

Count Name Group
----- ---- -----
 856 Service Control Manager {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 640 TermServDevices {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 91 Print {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 100 WMPNetworkSvc {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 123 Tcpip {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

For more information about the Get-EventLog cmdlet, type Get-Help Get-EventLog.
For more information about the Export-CliXml and Import-CliXml cmdlets, type Get-
Help Export-CliXml and Get-Help Import-CliXml, respectively.

20.7 Create or Remove an Event Log

Problem
You want to create or remove an event log.

Solution
To create an event log, use the [System.Diagnostics.EventLog]::
CreateEventSource() method from the .NET Framework:

$newLog =
 New-Object Diagnostics.EventSourceCreationData
 "PowerShellCookbook","ScriptEvents"

[Diagnostics.EventLog]::CreateEventSource($newLog)

370 | Chapter 20: Event Logs

To delete an event log, use the [System.Diagnostics.EventLog]::Delete() method
from the .NET Framework:

[Diagnostics.EventLog]::Delete("ScriptEvents")

Discussion
The [System.Diagnostics.EventLog]::CreateEventSource() method from the .NET
Framework registers a new event source (PowerShellCookbook in the solution) to write
entries to an event log (ScriptEvents in the solution). If the event log does not exist,
the CreateEventSource() method creates the event log.

The [System.Diagnostics.EventLog]::Delete() method from the .NET Framework
deletes the event log altogether, along with any event sources associated with it. To
delete only a specific event source, use the [System.Diagnostics.EventLog]::
DeleteEventSource() method from the .NET Framework.

Be careful when deleting event logs, as it is difficult to recreate all the
event sources if you delete the wrong log by accident.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

20.8 Write to an Event Log

Problem
You want to add an entry to an event log.

Solution
To write to an event log, use the –List parameter on the Get-EventLog cmdlet to
retrieve the proper event log. Then, set its source to a registered event log source and
call its WriteEntry() method:

PS >$log = Get-EventLog -List | Where-Object { $_.Log -eq "ScriptEvents" }
PS >$log.Source = "PowerShellCookbook"
PS >$log.WriteEntry("This is a message from my script.")
PS >
PS >Get-EventLog ScriptEvents -Newest 1 | Select Source,Message

Source Message
------ -------
PowerShellCookbook This is a message from my script.

20.9 Access Event Logs of a Remote Machine | 371

Discussion
As the solution mentions, you must set the event log’s Source property to a regis-
tered event log source before you can write information to the log. If you have not
already registered an event log source on the system, see Recipe 20.7, “Create or
Remove an Event Log.”

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 20.7, “Create or Remove an Event Log”

20.9 Access Event Logs of a Remote Machine

Problem
You want to access event log entries from a remote machine.

Solution
To access event logs on a remote machine, create a new System.Diagnostics.
EventLog class with the log name and computer name. Then access its Entries
property:

PS >$log = New-Object Diagnostics.EventLog "System","LEE-DESK"
PS >$log.Entries | Group-Object Source

Count Name Group
----- ---- -----
 91 Print {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 640 TermServDevices {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 148 W32Time {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 100 WMPNetworkSvc {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 856 Service Control Manager {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 123 Tcpip {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

Discussion
The solution demonstrates one way to get access to event logs on a remote machine.
In addition to retrieving the event log entries, the System.Diagnostics.EventLog class
also lets you perform other operations on remote computers, such as creating event
logs, removing event logs, writing event log entries, and more.

372 | Chapter 20: Event Logs

The System.Diagnostics.EventLog class supports this through additional parameters
to the methods that manage event logs. For example, to get the event logs from a
remote machine:

[Diagnostics.EventLog]::GetEventLogs("LEE-DESK")

To create an event log or event source on a remote machine:

$newLog =
 New-Object Diagnostics.EventSourceCreationData
"PowerShellCookbook","ScriptEvents"
$newLog.MachineName = "LEE-DESK"
[Diagnostics.EventLog]::CreateEventSource($newLog)

To write entries to an event log on a remote machine:

$log = New-Object Diagnostics.EventLog "ScriptEvents","LEE-DESK"
$log.Source = "PowerShellCookbook"
$log.WriteEntry("Test event from a remote machine.")

For information about how to get event logs, see Recipe 20.1, “List All Event Logs;”
for more information about how to create or delete event logs, see Recipe 20.7, “Cre-
ate or Remove an Event Log;” and for more information about how to write event
log entries, see Recipe 20.8, “Write to an Event Log.”

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

• Recipe 20.1, “List All Event Logs”

• Recipe 20.7, “Create or Remove an Event Log”

• Recipe 20.8, “Write to an Event Log”

373

Chapter 21 CHAPTER 21

Processes22

21.0 Introduction
Working with system processes is a natural aspect of system administration. It is also
the source of most of the regular expression magic and kung fu that makes system
administrators proud. After all, who wouldn’t boast about this Unix one-liner to stop
all processes using more than 100 MB of memory:

ps -el | awk '{ if ($6 > (1024*100)) { print $3 } }' | grep -v PID | xargs kill

While helpful, it also demonstrates the inherently fragile nature of pure text process-
ing. For this command to succeed, it must:

• Depend on the ps command to display memory usage in column 6.

• Depend on column 6 of the ps command’s output to represent the memory
usage in kilobytes.

• Depend on column 3 of the ps command’s output to represent the process id.

• Remove the header column from the ps command’s output.

Since PowerShell’s Get-Process cmdlet returns information as highly structured .NET
objects, fragile text parsing becomes a thing of the past:

Get-Process | Where-Object { $_.WorkingSet -gt 100mb } | Stop-Process –WhatIf

If brevity is important, PowerShell defines aliases to make most commands easier to
type:

gps | ? { $_.WS -gt 100mb } | kill –WhatIf

21.1 List Currently Running Processes

Problem
You want to see which processes are running on the system.

374 | Chapter 21: Processes

Solution
To retrieve the list of currently running processes, use the Get-Process cmdlet:

PS >Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 274 6 1328 3940 33 1084 alg
 85 4 3816 6656 57 5.67 3460 AutoHotkey
 50 2 2292 1980 14 384.25 1560 BrmfRsmg
 71 3 2520 4680 35 0.42 2592 cmd
 946 7 3676 6204 32 848 csrss
 84 4 732 2248 22 3144 csrss
 68 4 936 3364 30 0.38 3904 ctfmon
 243 7 3648 9324 48 2.02 2892 Ditto
(...)

Discussion
The Get-Process cmdlet retrieves information about all processes running on the sys-
tem. Because these are rich .NET objects (of the type System.Diagnostics.Process),
advanced filters and operations are easier than ever before.

For example, to find all processes using more than 100 MB of memory:

PS >Get-Process | Where-Object { $_.WorkingSet -gt 100mb }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1458 29 83468 105824 273 323.80 3992 BigBloatedApp

To group processes by company:

PS >Get-Process | Group-Object Company

Count Name Group
----- ---- -----
 39 {alg, csrss, csrss, dllhost...}
 4 {AutoHotkey, Ditto, gnuserv, mafwTray}
 1 Brother Industries, Ltd. {BrmfRsmg}
 19 Microsoft Corporation {cmd, ctfmon, EXCEL, explorer...}
 1 Free Software Foundation {emacs}
 1 Microsoft (R) Corporation {FwcMgmt}
(...)

Or perhaps to sort by start time (with the most recent first):

PS >Get-Process | Sort -Descending StartTime | Select-Object -First 10

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1810 39 53616 33964 193 318.02 1452 iTunes
 675 6 41472 50180 146 49.36 296 powershell
 1240 35 48220 58860 316 167.58 4012 OUTLOOK

21.2 Launch a Process | 375

 305 8 5736 2460 105 21.22 3384 WindowsSearch...
 464 7 29704 30920 153 6.00 3680 powershell
 1458 29 83468 105824 273 324.22 3992 iexplore
 478 6 24620 23688 143 17.83 3548 powershell
 222 8 8532 19084 144 20.69 3924 EXCEL
 14 2 396 1600 15 0.06 2900 logon.scr
 544 18 21336 50216 294 180.72 2660 WINWORD

These advanced tasks become incredibly simple due to the rich amount of informa-
tion that PowerShell returns for each process. For more information about the Get-
Process cmdlet, type Get-Help Get-Process. For more information about filtering,
grouping, and sorting in PowerShell commands, see Recipe 2.1, “Filter Items in a
List or Command Output.”

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 2.1, “Filter Items in a List or Command Output”

• Recipe 3.4, “Work with .NET Objects”

21.2 Launch a Process

Problem
You want to launch a new process on the system, but also want to configure its start-
up environment.

Solution
To launch a new process, use the [System.Diagnostics.Process]::Start() method.
To control its startup environment, supply it with a System.Diagnostics.
ProcessStartInfo object that you prepare, as shown in Example 21-1.

Example 21-1. Configuring the startup environment of a new process

$credential = Get-Credential

Prepare the startup information (including username and password)
$startInfo = New-Object Diagnostics.ProcessStartInfo
$startInfo.UserName = $credential.Username
$startInfo.Password = $credential.Password
$startInfo.Filename = "powershell"

Start the process
$startInfo.UseShellExecute = $false
[Diagnostics.Process]::Start($startInfo)

376 | Chapter 21: Processes

Discussion
Normally, launching a process in PowerShell is as simple as typing the program
name:

PS >notepad c:\temp\test.txt

However, you may sometimes need detailed control over the process details, such
as its credentials, startup directory, environment variables, and more. In those situ-
ations, use the [System.Diagnostics.Process]::Start() method to provide that
functionality.

The following function acts like the cmd.exe start command and like
the Start | Run dialog in Windows:

PS >function start { [Diagnostics.Process]::Start($args) }

PS >start www.msn.com

For more information about launching programs from PowerShell, see Recipe 1.1,
“Run Programs, Scripts, and Existing Tools.” For more information about working
with classes from the .NET Framework, see Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 3.4, “Work with .NET Objects”

21.3 Stop a Process

Problem
You want to stop (or kill) a process on the system.

Solution
To stop a process, use the Stop-Process cmdlet, as shown in Example 21-2.

Example 21-2. Stopping a process using the Stop-Process cmdlet

PS >notepad
PS >Get-Process Notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 42 3 1276 3916 32 0.09 3520 notepad

PS >Stop-Process -ProcessName notepad
PS >Get-Process Notepad

21.4 Program: Invoke a PowerShell Expression on a Remote Machine | 377

Discussion
While the parameters of the Stop-Process cmdlet are useful in their own right, Power-
Shell’s pipeline model lets you be even more precise. The Stop-Process cmdlet stops
any processes that you pipeline into it, so an advanced process set generated by Get-
Process automatically turns into an advanced process set for the Stop-Process cmdlet
to operate on:

PS >Get-Process | Where-Object { $_.WorkingSet -lt 10mb } |
>> Sort-Object -Descending Name | Stop-Process -WhatIf
>>
What if: Performing operation "Stop-Process" on Target "svchost (1368)".
What if: Performing operation "Stop-Process" on Target "sqlwriter (1772)".
What if: Performing operation "Stop-Process" on Target "qttask (3672)".
What if: Performing operation "Stop-Process" on Target "Ditto (2892)".
What if: Performing operation "Stop-Process" on Target "ctfmon (3904)".
What if: Performing operation "Stop-Process" on Target "csrss (848)".
What if: Performing operation "Stop-Process" on Target "BrmfRsmg (1560)".
What if: Performing operation "Stop-Process" on Target "AutoHotkey (3460)".
What if: Performing operation "Stop-Process" on Target "alg (1084)".

Notice that this example uses the –WhatIf flag on the Stop-Process
cmdlet. This flag lets you see what would happen if you were to run
the command but doesn’t actually perform the action.

For more information about the Stop-Process cmdlet, type Get-Help Stop-Process.
For more information about the Where-Object cmdlet, type Get-Help Where-Object.

21.4 Program: Invoke a PowerShell Expression on a
Remote Machine

Example 21-4 lets you start processes and invoke PowerShell expressions on remote
machines. It uses PsExec (from http://www.microsoft.com/technet/sysinternals/utilities/
psexec.mspx) to support the actual remote command execution.

This script offers more power than just remote command execution, however. As
Example 21-3 demonstrates, it leverages PowerShell’s capability to import and
export strongly structured data, so you can work with the command output using
many of the same techniques you use to work with command output on the local
system. Example 21-3 demonstrates this power by filtering command output on the
remote system but sorting it on the local system.

Get-Process : Cannot find a process with the name 'Notepad'. Verify the
process name and call the cmdlet again.
At line:1 char:12
+ Get-Process <<<< Notepad

Example 21-2. Stopping a process using the Stop-Process cmdlet (continued)

378 | Chapter 21: Processes

Since this strongly structured data comes from objects on another system, PowerShell
does not regenerate the functionality of those objects (except in rare cases). For more
information about importing and exporting structured data, see Recipe 8.4, “Easily
Import and Export Your Structured Data.”

Example 21-3. Invoking a PowerShell expression on a remote machine

PS >$command = { Get-Process | Where-Object { $_.Handles -gt 1000 } }
PS >Invoke-RemoteExpression \\LEE-DESK $command | Sort Handles

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1025 8 3780 3772 32 134.42 848 csrss
 1306 37 50364 64160 322 409.23 4012 OUTLOOK
 1813 39 54764 36360 321 340.45 1452 iTunes
 2316 273 29168 41164 218 134.09 1244 svchost

Example 21-4. Invoke-RemoteExpression.ps1

##
##
Invoke-RemoteExpression.ps1
##
Invoke a PowerShell expression on a remote machine. Requires PsExec from
http://www.microsoft.com/technet/sysinternals/utilities/psexec.mspx
##
ie:
##
PS >Invoke-RemoteExpression \\LEE-DESK { Get-Process }
PS >(Invoke-RemoteExpression \\LEE-DESK { Get-Date }).AddDays(1)
PS >Invoke-RemoteExpression \\LEE-DESK { Get-Process } | Sort Handles
##
##

param(
 $computer = "\\$ENV:ComputerName",
 [ScriptBlock] $expression = $(throw "Please specify an expression to invoke."),
 [switch] $noProfile
)

Prepare the command line for PsExec. We use the XML output encoding so
that PowerShell can convert the output back into structured objects.
$commandLine = "echo . | powershell -Output XML "

if($noProfile)
{
 $commandLine += "-NoProfile "
}

Convert the command into an encoded command for PowerShell
$commandBytes = [System.Text.Encoding]::Unicode.GetBytes($expression)
$encodedCommand = [Convert]::ToBase64String($commandBytes)
$commandLine += "-EncodedCommand $encodedCommand"

21.4 Program: Invoke a PowerShell Expression on a Remote Machine | 379

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 8.4, “Easily Import and Export Your Structured Data”

Collect the output and error output
$errorOutput = [IO.Path]::GetTempFileName()
$output = psexec /acceptEula $computer cmd /c $commandLine 2>$errorOutput

Check for any errors
$errorContent = Get-Content $errorOutput
Remove-Item $errorOutput
if($errorContent -match "Access is denied")
{
 $OFS = "`n"
 $errorMessage = "Could not execute remote expression. "
 $errorMessage += "Ensure that your account has administrative " +
 "privileges on the target machine.`n"
 $errorMessage += ($errorContent -match "psexec.exe :")

 Write-Error $errorMessage
}

Return the output to the user
$output

Example 21-4. Invoke-RemoteExpression.ps1 (continued)

380

Chapter 22CHAPTER 22

System Services 23

22.0 Introduction
As the support mechanism for many administrative tasks on Windows, managing
and working with system services naturally fits into the administrator’s toolbox.

PowerShell offers a handful of cmdlets to help make working with system services eas-
ier: from listing services, to life cycle management, and even to service installation.

22.1 List All Running Services

Problem
You want to see which services are running on the system.

Solution
To list all running services, use the Get-Service cmdlet:

PS >Get-Service

Status Name DisplayName
------ ---- -----------
Running ADAM_Test Test
Stopped Alerter Alerter
Running ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...
Running Browser Computer Browser
(...)

22.1 List All Running Services | 381

Discussion
The Get-Service cmdlet retrieves information about all services running on the sys-
tem. Because these are rich .NET objects (of the type System.ServiceProcess.
ServiceController), you can apply advanced filters and operations to make manag-
ing services straightforward.

For example, to find all running services:

PS >Get-Service | Where-Object { $_.Status -eq "Running" }

Status Name DisplayName
------ ---- -----------
Running ADAM_Test Test
Running ALG Application Layer Gateway Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...
Running Browser Computer Browser
Running COMSysApp COM+ System Application
Running CryptSvc Cryptographic Services

Or, to sort services by the number of services that depend on them:

PS >Get-Service | Sort-Object -Descending { $_.DependentServices.Count }

Status Name DisplayName
------ ---- -----------
Running RpcSs Remote Procedure Call (RPC)
Running PlugPlay Plug and Play
Running lanmanworkstation Workstation
Running SSDPSRV SSDP Discovery Service
Running TapiSrv Telephony
(...)

Since PowerShell returns full-fidelity .NET objects that represent system services,
these tasks and more become incredibly simple due to the rich amount of informa-
tion that PowerShell returns for each service. For more information about the Get-
Service cmdlet, type Get-Help Get-Service. For more information about filtering,
grouping, and sorting in PowerShell commands, see Recipe 2.1, “Filter Items in a
List or Command Output.”

The Get-Service cmdlet displays most (but not all) information about
running services. For additional information (such as the service’s star-
tup mode), use the Get-WmiObject cmdlet:

$service = Get-WmiObject Win32_Service |

 Where-Object { $_.Name -eq "AudioSrv" }

$service.StartMode

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.” For more information about working with

382 | Chapter 22: System Services

the Get-WmiObject cmdlet, see Recipe 15.1, “Access Windows Management Instru-
mentation Data.”

See Also
• Recipe 2.1, “Filter Items in a List or Command Output”

• Recipe 3.4, “Work with .NET Objects”

• Recipe 15.1, “Access Windows Management Instrumentation Data”

22.2 Manage a Running Service

Problem
You want to manage a running service.

Solution
To stop a service, use the Stop-Service cmdlet:

PS >Stop-Service AudioSrv -WhatIf
What if: Performing operation "Stop-Service" on Target "Windows Audio (Audi
oSrv)".

Likewise, use the Suspend-Service, Restart-Service, and Resume-Service cmdlets to
suspend, restart, and resume services, respectively.

For other tasks (such as setting the startup mode), use the Get-WmiObject cmdlet:

$service = Get-WmiObject Win32_Service |
 Where-Object { $_.Name -eq "AudioSrv" }
$service.ChangeStartMode("Manual")
$service.ChangeStartMode("Automatic")

Discussion
The Stop-Service cmdlet lets you stop a service either by name or display name.

Notice that the solution uses the –WhatIf flag on the Stop-Service
cmdlet. This parameter lets you see what would happen if you were to
run the command but doesn’t actually perform the action.

For more information about the Stop-Service cmdlet, type Get-Help Stop-Service. If
you want to suspend, restart, or resume a service, see the Suspend-Service, Restart-
Service, and Resume-Service cmdlets, respectively.

For more information about working with the Get-WmiObject cmdlet, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

22.3 Access Services on a Remote Machine | 383

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

22.3 Access Services on a Remote Machine

Problem
You want to list or manage services on a remote machine.

Solution
To retrieve the services from a remote machine, use the [System.ServiceProcess.
ServiceController]::GetServices() method from the .NET Framework.

PS >[void] ([Reflection.Assembly]::LoadWithPartialName("System.ServiceProcess"))
PS >[System.ServiceProcess.ServiceController]::GetServices("LEE-DESK")

Status Name DisplayName
------ ---- -----------
Running ADAM_Test Test
Stopped Alerter Alerter
Running ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...
Running Browser Computer Browser
Stopped CiSvc Indexing Service

To control one, use the Where-Object cmdlet to retrieve that one specifically and then
call the methods on the object that manage it:

[void] ([Reflection.Assembly]::LoadWithPartialName("System.ServiceProcess"))
$service =
 [System.ServiceProcess.ServiceController]::GetServices("LEE-DESK") |
 Where-Object { $_.Name -eq "Themes" }

$service.Stop()
$service.WaitForStatus("Stopped")
Start-Sleep 2
$service.Start()

384 | Chapter 22: System Services

Discussion
If you have administrator privileges on a remote machine, the [System.
ServiceProcess.ServiceController]::GetServices() method from the .NET Frame-
work lets you control services on that machine.

When doing this, note that both of the examples from the solution
require that you first load the assembly that contains the .NET classes
that manage services. The *-Service cmdlets load this DLL automati-
cally.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

385

Chapter 23 CHAPTER 23

Active Directory24

23.0 Introduction
By far, the one thing that makes system administration on the Windows platform
most unique is its interaction with Active Directory. As the centralized authoriza-
tion, authentication, and information store for Windows networks, Active Directory
automation forms the core of many enterprise administration tasks.

While PowerShell doesn’t include either Active Directory cmdlets or an Active Direc-
tory provider, its access through the .NET Framework provides support for the
broad range of Active Directory administration.

23.1 Test Active Directory Scripts on a Local
Installation

Problem
You want to test your Active Directory scripts against a local installation.

Solution
To test your scripts against a local system, install Active Directory Application Mode
(ADAM) and its sample configuration.

Discussion
To test your scripts against a local installation, you’ll need to install ADAM, and
then create a test instance.

386 | Chapter 23: Active Directory

Install ADAM

To install ADAM, the first step is to download it. Microsoft provides ADAM free of
charge from the Download Center. You can obtain it by searching for “Active Direc-
tory Application Mode” at http://download.microsoft.com.

Once you’ve downloaded it, run the setup program to install ADAM. Figure 23.1
shows the ADAM setup wizard.

Create a test instance

From the ADAM menu in the Windows Start menu, select Create an ADAM
instance. In the Setup Options page that appears next, select A unique instance. In
the Instance Name page, type Test as an instance name. Accept the default ports,
and then select Yes, create an application directory partition on the next page. As the
partition name, type DC=Fabrikam,DC=COM, as shown in Figure 23-2.

In the next pages, accept the default file locations, service accounts, and administrators.

When the setup wizard gives you the option to import LDIF files, import all avail-
able files except for MS-AZMan.LDF. Click Next on this page and the confirmation
page to complete the instance setup.

Figure 23-1. ADAM’s post-installation screen

23.1 Test Active Directory Scripts on a Local Installation | 387

Open a PowerShell window, and test your new instance:

PS >[adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"

distinguishedName

{DC=Fabrikam,DC=COM}

The [adsi] tag is a type shortcut, like several other type shortcuts in PowerShell. The
[adsi] type shortcut provides a quick way to create and work with directory entries
through Active Directory Service Interfaces.

Although scripts that act against an ADAM test environment are almost identical
to those that operate directly against Active Directory, there are a few minor differ-
ences. ADAM scripts specify the host and port in their binding string (that is,
localhost:389/), whereas Active Directory scripts do not.

For more information about type shortcuts in PowerShell, see “Working with the .
NET Framework” in Appendix A.

See Also
• “Working with the .NET Framework” in Appendix A

Figure 23-2. Creating a partition of a test ADAM instance

388 | Chapter 23: Active Directory

23.2 Create an Organizational Unit

Problem
You want to create an organizational unit (OU) in Active Directory.

Solution
To create an organizational unit in a container, use the [adsi] type shortcut to bind
to a part of the Active Directory, and then call the Create() method.

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$salesOrg = $domain.Create("OrganizationalUnit", "OU=Sales")
$salesOrg.Put("Description", "Sales Headquarters, SF")
$salesOrg.Put("wwwHomePage", "http://fabrikam.com/sales")
$salesOrg.SetInfo()

Discussion
The solution shows an example of creating a Sales organizational unit (OU) at the
root of the organization. You can use the same syntax to create OUs under other OUs
as well. Example 23-1 demonstrates how to create an East and West sales division.

To see that these OUs have been created, see Recipe 23.5, “Get the Children of an
Active Directory Container.”

See Also
• Recipe 23.5, “Get the Children of an Active Directory Container”

23.3 Get the Properties of an Organizational Unit

Problem
You want to get and list the properties of a specific OU.

Example 23-1. Creating East and West sales divisions

$sales = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

$east = $sales.Create("OrganizationalUnit", "OU=East")
$east.Put("wwwHomePage", "http://fabrikam.com/sales/east")
$east.SetInfo()

$west = $sales.Create("OrganizationalUnit", "OU=West")
$west.Put("wwwHomePage", "http://fabrikam.com/sales/west")
$west.SetInfo()

23.4 Modify Properties of an Organizational Unit | 389

Solution
To list the properties of an OU, use the [adsi] type shortcut to bind to the OU in
Active Directory, and then pass the OU to the Format-List cmdlet:

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$organizationalUnit | Format-List *

Discussion
The solution retrieves the Sales West OU. By default, the Format-List cmdlet shows
only the distinguished name of the group, so we type Format-List * to display all
properties.

If you know which property you want the value of, you can specify it by name:

PS >$organizationalUnit.wWWHomePage
http://fabrikam.com/sales/west

Unlike OUs, some types of Active Directory objects don’t let you retrieve their prop-
erties by name this way. Instead, you must call the Get() method to retrieve specific
properties:

PS >$organizationalUnit.Get("name")
West

23.4 Modify Properties of an Organizational Unit

Problem
You want to modify properties of a specific OU.

Solution
To modify the properties of an OU, use the [adsi] type shortcut to bind to the OU
in Active Directory, and then call the Put() method. Finally, call the SetInfo()
method to apply the changes.

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$organizationalUnit.Put("Description", "Sales West Organization")
$organizationalUnit.SetInfo()

Discussion
The solution retrieves the Sales West OU. It then sets the description to Sales West
Organization, and then applies those changes to Active Directory.

390 | Chapter 23: Active Directory

23.5 Get the Children of an Active Directory Container

Problem
You want to list all the children of an Active Directory container.

Solution
To list the items in a container, use the [adsi] type shortcut to bind to the OU in
Active Directory, and then access the PsBase.Children property of that container:

$sales =
 [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"
$sales.PsBase.Children

Discussion
The solution lists all the children of the Sales OU. This is the level of information
you typically get from selecting a node in the ADSIEdit MMC snapin. If you want to
filter this information to include only users, other organizational units, or more com-
plex queries, see Recipe 23.8, “Search for a User Account.”

See Also
• Recipe 23.8, “Search for a User Account”

23.6 Create a User Account

Problem
You want to create a user account in a specific OU.

Solution
To create a user in a container, use the [adsi] type shortcut to bind to the OU in
Active Directory, and then call the Create() method:

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user = $salesWest.Create("User", "CN=MyerKen")
$user.Put("userPrincipalName", "Ken.Myer@fabrikam.com")
$user.Put("displayName", "Ken Myer")
$user.SetInfo()

23.7 Program: Import Users in Bulk to Active Directory | 391

Discussion
The solution creates a user under the Sales West organizational unit. It sets the
userPrincipalName (a unique identifier for the user), as well as the user’s display
name.

When you run this script against a real Active Directory deployment
(as opposed to an ADAM instance), be sure to update the
sAMAccountName property, or you’ll get an autogenerated default.

To see that these users have been created, see Recipe 23.5, “Get the Children of an
Active Directory Container.”

If you need to create users in bulk, see the following section, Recipe 23.7, “Program:
Import Users in Bulk to Active Directory.”

See Also
• Recipe 23.5, “Get the Children of an Active Directory Container”

• Recipe 23.7, “Program: Import Users in Bulk to Active Directory”

23.7 Program: Import Users in Bulk to Active Directory
When importing several users into Active Directory, it quickly becomes tiresome to
do it by hand (or even to script the addition of each user one-by-one). To solve this
problem, we can put all our data into a CSV, and then do a bulk import from the
information in the CSV.

Example 23-2 supports this in a flexible way. You provide a container to hold the
user accounts and a CSV that holds the account information. For each row in the
CSV, the script creates a user from the data in that row. The only mandatory col-
umn is a CN column to define the common name of the user. Any other columns, if
present, represent other Active Directory attributes you want to define for that user.

Example 23-2. Import-ADUser.ps1

##
##
Import-AdUser.ps1
##
Create users in Active Directory from the content of a CSV.
##
For example:
$container = "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"
Import-ADUser.ps1 $container .\users.csv
##
In the user CSV, One column must be named "CN" for the user name.

392 | Chapter 23: Active Directory

All other columns represent properties in Active Directory for that user.
##
For example:
CN,userPrincipalName,displayName,manager
MyerKen,Ken.Myer@fabrikam.com,Ken Myer,
DoeJane,Jane.Doe@fabrikam.com,Jane Doe,"CN=MyerKen,OU=West,OU=Sales,DC=..."
SmithRobin,Robin.Smith@fabrikam.com,Robin Smith,"CN=MyerKen,OU=West,OU=..."
##
##

param(
 $container = $(throw "Please specify a container (such as " +
 "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM)"),
 $csvPath = $(throw "Please specify the path to the users CSV")
)

Bind to the container
$userContainer = [adsi] $container

Ensure that the container was valid
if(-not $userContainer.Name)
{
 Write-Error "Could not connect to $container"
 return
}

Load the CSV
$users = @(Import-Csv $csvPath)
if($users.Count -eq 0)
{
 return
}

Go through each user from the CSV
foreach($user in $users)
{
 ## Pull out the name, and create that user
 $username = $user.CN
 $newUser = $userContainer.Create("User", "CN=$username")

 ## Go through each of the properties from the CSV, and set its value
 ## on the user
 foreach($property in $user.PsObject.Properties)
 {
 ## Skip the property if it was the CN property that sets the
 ## user name
 if($property.Name -eq "CN")
 {
 continue
 }

 ## Ensure they specified a value for the property

Example 23-2. Import-ADUser.ps1 (continued)

23.8 Search for a User Account | 393

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

23.8 Search for a User Account

Problem
You want to search for a specific user account, but don’t know the user’s distin-
guished name (DN).

Solution
To search for a user in Active Directory, use the [adsi] type shortcut to bind to a
container that holds the user account, and then use the System.DirectoryServices.
DirectorySearcher class from the .NET Framework to search for the user:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = New-Object System.DirectoryServices.DirectorySearcher $domain
$searcher.Filter = '(&(objectClass=User)(displayName=Ken Myer))'

$userResult = $searcher.FindOne()
$user = $userResult.GetDirectoryEntry()

Discussion
When you don’t know the full DN of a user account, the System.DirectoryServices.
DirectorySearcher class from the .NET Framework lets you search for it.

You provide an LDAP filter (in this case, searching for users with the display name of
Ken Myer), and then call the FindOne() method. The FindOne() method returns the
first search result that matches the filter, so we retrieve its actual Active Directory

 if(-not $property.Value)
 {
 continue
 }

 ## Set the value of the property
 $newUser.Put($property.Name, $property.Value)
 }

 ## Finalize the information in Active Directory
 $newUser.SetInfo()
}

Example 23-2. Import-ADUser.ps1 (continued)

394 | Chapter 23: Active Directory

entry. Although the solution searches on the user’s display name, you can search on
any field in Active Directory—the userPrincipalName and sAMAccountName are two
other good choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If we know that Ken Myer is in the Sales OU, it would be better to bind to
that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search http://msdn.
microsoft.com for “Search Filter Syntax.”

23.9 Get and List the Properties of a User Account

Problem
You want to get and list the properties of a specific user account.

Solution
To list the properties of a user account, use the [adsi] type shortcut to bind to the
user in Active Directory, and then pass the user to the Format-List cmdlet:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user | Format-List *

Discussion
The solution retrieves the MyerKen user from the Sales West OU. By default, the
Format-List cmdlet shows only the distinguished name of the user, so we type
Format-List * to display all properties.

If you know the property for which you want the value, specify it by name:

PS >$user.DirectReports
CN=SmithRobin,OU=West,OU=Sales,DC=Fabrikam,DC=COM
CN=DoeJane,OU=West,OU=Sales,DC=Fabrikam,DC=COM

Unlike users, some types of Active Directory objects don’t allow you to retrieve their
properties by name this way. Instead, you must call the Get() method to retrieve spe-
cific properties:

PS >$user.Get("userPrincipalName")
Ken.Myer@fabrikam.com

23.11 Create a Security or Distribution Group | 395

23.10 Modify Properties of a User Account

Problem
You want to modify properties of a specific user account.

Solution
To modify a user account, use the [adsi] type shortcut to bind to the user in Active
Directory, and then call the Put() method to modify properties. Finally, call the
SetInfo() method to apply the changes.

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user.Put("Title", "Sr. Exec. Overlord")
$user.SetInfo()

Discussion
The solution retrieves the MyerKen user from the Sales West OU. It then sets the user’s
title to Sr. Exec. Overlord and applies those changes to Active Directory.

23.11 Create a Security or Distribution Group

Problem
You want to create a security or distribution group.

Solution
To create a security or distribution group, use the [adsi] type shortcut to bind to a
container in Active Directory, and then call the Create() method:

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management = $salesWest.Create("Group", "CN=Management")
$management.SetInfo()

Discussion
The solution creates a group named Management in the Sales West OU.

When you run this script against a real Active Directory deployment
(as opposed to an ADAM instance), be sure to update the
sAMAccountName property, or you’ll get an autogenerated default.

396 | Chapter 23: Active Directory

When you create a group in Active Directory, it is customary to also set the type of
group by defining the groupType attribute on that group. To specify a group type, use
the –bor operator to combine group flags and use the resulting value as the groupType
property. Example 23-3 defines the group as a global, security-enabled group.

If you need to create groups in bulk from the data in a CSV, the Import-ADUser script
given in Recipe 23.7, “Program: Import Users in Bulk to Active Directory” provides
an excellent starting point. To make the script create groups instead of users, change
this line:

 $newUser = $userContainer.Create("User", "CN=$username")

to this:

 $newUser = $userContainer.Create("Group", "CN=$username")

If you change the script to create groups in bulk, it is helpful to also change the vari-
able names ($user, $users, $username, and $newUser) to correspond to group-related
names: $group, $groups, $groupname, and $newgroup.

See Also
• Recipe 23.7, “Program: Import Users in Bulk to Active Directory”

23.12 Search for a Security or Distribution Group

Problem
You want to search for a specific group, but don’t know its DN.

Example 23-3. Creating an Active Directory security group with a custom groupType

$ADS_GROUP_TYPE_GLOBAL_GROUP = 0x00000002
$ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP = 0x00000004
$ADS_GROUP_TYPE_LOCAL_GROUP = 0x00000004
$ADS_GROUP_TYPE_UNIVERSAL_GROUP = 0x00000008
$ADS_GROUP_TYPE_SECURITY_ENABLED = 0x80000000

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$groupType = $ADS_GROUP_TYPE_SECURITY_ENABLED -bor
 $ADS_GROUP_TYPE_GLOBAL_GROUP

$management = $salesWest.Create("Group", "CN=Management")
$management.Put("groupType", $groupType)
$management.SetInfo()

23.13 Get the Properties of a Group | 397

Solution
To search for a security or distribution group, use the [adsi] type shortcut to bind to
a container that holds the group in Active Directory, and then use the System.
DirectoryServices.DirectorySearcher class from the .NET Framework to search for
the group:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = New-Object System.DirectoryServices.DirectorySearcher $domain
$searcher.Filter = '(&(objectClass=Group)(name=Management))'

$groupResult = $searcher.FindOne()
$group = $groupResult.GetDirectoryEntry()

Discussion
When you don’t know the full DN of a group, the System.DirectoryServices.
DirectorySearcher class from the .NET Framework lets you search for it.

You provide an LDAP filter (in this case, searching for groups with the name of
Management), and then call the FindOne() method. The FindOne() method returns the
first search result that matches the filter, so we retrieve its actual Active Directory
entry. Although the solution searches on the group’s name, you can search on any
field in Active Directory—the mailNickname and sAMAccountName are two other good
choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If we know that the Management group is in the Sales OU, it would be better
to bind to that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search http://msdn.
microsoft.com for “Search Filter Syntax.”

23.13 Get the Properties of a Group

Problem
You want to get and list the properties of a specific security or distribution group.

Solution
To list the properties of a group, use the [adsi] type shortcut to bind to the group in
Active Directory, and then pass the group to the Format-List cmdlet:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$group | Format-List *

398 | Chapter 23: Active Directory

Discussion
The solution retrieves the Management group from the Sales West OU. By default, the
Format-List cmdlet shows only the DN of the group, so we type Format-List * to
display all properties.

If you know the property for which you want the value, specify it by name:

PS >$group.Member
CN=SmithRobin,OU=West,OU=Sales,DC=Fabrikam,DC=COM
CN=MyerKen,OU=West,OU=Sales,DC=Fabrikam,DC=COM

Unlike groups, some types of Active Directory objects don’t allow you to retrieve
their properties by name this way. Instead, you must call the Get() method to
retrieve specific properties:

PS >$group.Get("name")
Management

23.14 Find the Owner of a Group

Problem
You want to get the owner of a security or distribution group.

Solution
To determine the owner of a group, use the [adsi] type shortcut to bind to the group
in Active Directory, and then retrieve the ManagedBy property:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$group.ManagedBy

Discussion
The solution retrieves the owner of the Management group from the Sales West OU.
To do this, it accesses the ManagedBy property of that group. This property exists only
when populated by the administrator group, but it is a best practice to do so.

Unlike groups, some types of Active Directory objects don’t allow you to retrieve
their properties by name this way. Instead, you must call the Get() method to
retrieve specific properties:

PS >$group.Get("name")
Management

23.16 Add a User to a Security or Distribution Group | 399

23.15 Modify Properties of a Security or Distribution
Group

Problem
You want to modify properties of a specific security or distribution group.

Solution
To modify a security or distribution group, use the [adsi] type shortcut to bind to
the group in Active Directory, and then call the Put() method to modify properties.
Finally, call the SetInfo() method to apply the changes.

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

PS >$group.Put("Description", "Managers in the Sales West Organization")
PS >$group.SetInfo()

Discussion
The solution retrieves the Management group from the Sales West OU. It then sets the
description to Managers in the Sales West Organization, and then applies those
changes to Active Directory.

23.16 Add a User to a Security or Distribution Group

Problem
You want to add a user to a security or distribution group.

Solution
To add a user to a security or distribution group, use the [adsi] type shortcut to bind
to the group in Active Directory, and then call the Add() method:

$management =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user = "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management.Add($user)

Discussion
The solution adds the MyerKen user to a group named Management in the Sales West OU.

To see whether you have removed the user successfully, see Recipe 23.18, “List a
User’s Group Membership.”

400 | Chapter 23: Active Directory

See Also
• Recipe 23.18, “List a User’s Group Membership”

23.17 Remove a User from a Security or Distribution
Group

Problem
You want to remove a user from a security or distribution group.

Solution
To remove a user from a security or distribution group, use the [adsi] type shortcut
to bind to the group in Active Directory, and then call the Remove() method:

$management =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user = "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management.Remove($user)

Discussion
The solution removes the MyerKen user from a group named Management in the Sales
West OU.

To see whether you have removed the user successfully, see the following section,
Recipe 23.18, “List a User’s Group Membership.”

See Also
• Recipe 23.18, “List a User’s Group Membership”

23.18 List a User’s Group Membership

Problem
You want to list the groups to which a user belongs.

Solution
To list a user’s group membership, use the [adsi] type shortcut to bind to the user in
Active Directory, and then access the MemberOf property:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$user.MemberOf

23.20 List the Users in an Organizational Unit | 401

Discussion
The solution lists all groups in which the MyerKen user is a member. Since Active
Directory stores this information as a user property, this is simply a specific case of
retrieving information about the user. For more information about retrieving infor-
mation about a user, see Recipe 23.9, “Get and List the Properties of a User
Account.”

See Also
• Recipe 23.9, “Get and List the Properties of a User Account”

23.19 List the Members of a Group

Problem
You want to list all the members in a group.

Solution
To list the members of a group, use the [adsi] type shortcut to bind to the group in
Active Directory, and then access the Member property:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$group.Member

Discussion
The solution lists all members of the Management group in the Sales West OU. Since
Active Directory stores this information as a property of the group, this is simply a
specific case of retrieving information about the group. For more information about
retrieving information about a group, see Recipe 23.13, “Get the Properties of a
Group.”

See Also
• Recipe 23.13, “Get the Properties of a Group”

23.20 List the Users in an Organizational Unit

Problem
You want to list all the users in an OU.

402 | Chapter 23: Active Directory

Solution
To list the users in an OU, use the [adsi] type shortcut to bind to the OU in Active
Directory. Create a new System.DirectoryServices.DirectorySearcher for that OU,
and then set its Filter property to (objectClass=User). Finally, call the searcher’s
FindAll() method to perform the search.

$sales =
 [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

$searcher = New-Object System.DirectoryServices.DirectorySearcher $sales
$searcher.Filter = '(objectClass=User)'
$searcher.FindOne()

Discussion
The solution lists all users in the Sales OU. It does this through the System.
DirectoryServices.DirectorySearcher class from the .NET Framework, which lets
you query Active Directory. The Filter property specifies an LDAP filter string.

By default, a DirectorySearcher searches the given container and all
containers below it. Set the SearchScope property to change this behav-
ior. A value of Base searches only the current container, while a value
of OneLevel searches only the immediate children.

For more information about working with classes from the .NET Framework, see
Recipe 3.4, “Work with .NET Objects.”

See Also
• Recipe 3.4, “Work with .NET Objects”

23.21 Search for a Computer Account

Problem
You want to search for a specific computer account, but don’t know its DN.

Solution
To search for a computer account, use the [adsi] type shortcut to bind to a con-
tainer that holds the account in Active Directory, and then use the System.
DirectoryServices.DirectorySearcher class from the .NET Framework to search for
the account:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = New-Object System.DirectoryServices.DirectorySearcher $domain
$searcher.Filter = '(&(objectClass=Computer)(name=kenmyer_laptop))'

23.22 Get and List the Properties of a Computer Account | 403

$computerResult = $searcher.FindOne()
$computer = $computerResult.GetDirectoryEntry()

Discussion
When you don’t know the full DN of a computer account, the System.
DirectoryServices.DirectorySearcher class from the .NET Framework lets you
search for it.

You provide an LDAP filter (in this case, searching for computers with the name of
kenmyer_laptop), and then call the FindOne() method. The FindOnel() method returns
the first search result that matches the filter, so we retrieve its actual Active Directory
entry. Although the solution searches on the computer’s name, you can search on any
field in Active Directory—the sAMAccountName and operating system characteristics
(operatingSystem, operatingSystemVersion, operatingSystemServicePack) are other
good choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If you know that the computer is in the Sales OU, it would be better to bind
to that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search http://msdn.
microsoft.com for “Search Filter Syntax.”

23.22 Get and List the Properties of a Computer
Account

Problem
You want to get and list the properties of a specific computer account.

Solution
To list the properties of a computer account, use the [adsi] type shortcut to bind to
the computer in Active Directory, and then pass the computer to the Format-List
cmdlet:

$computer =
 [adsi] "LDAP://localhost:389/cn=kenmyer_laptop,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$computer | Format-List *

Discussion
The solution retrieves the kenmyer_laptop computer from the Sales West OU. By
default, the Format-List cmdlet shows only the distinguished name of the computer,
so we type Format-List * to display all properties.

404 | Chapter 23: Active Directory

If you know the property for which you want the value, specify it by name:

PS >$computer.OperatingSystem
Windows Server 2003

Unlike users, some types of Active Directory objects don’t allow you to retrieve their
properties by name this way. Instead, you must call the Get() method to retrieve spe-
cific properties:

PS >$user.Get("operatingSystem")
Windows Server 2003

405

Chapter 24 CHAPTER 24

Enterprise Computer Management25

24.0 Introduction
When working with Windows systems across an enterprise, the question often
arises: “How do I do <some task> in PowerShell?” In an administrator’s perfect world,
anybody who designs a feature with management implications also supports (via
PowerShell cmdlets) the tasks that manage that feature. Many management tasks
have been around longer than PowerShell, though, so the answer can sometimes be,
“The same way you did it before PowerShell.”

That’s not to say that your life as an administrator doesn’t improve with the intro-
duction of PowerShell, however. Pre-PowerShell administration tasks generally fall
into one of several models: command-line utilities, Windows Management Instru-
mentation (WMI) interaction, registry manipulation, file manipulation, interaction
with COM objects, or interaction with .NET objects.

PowerShell makes it easier to interact with all these task models, and therefore makes
it easier to manage functionality that depends on them.

24.1 Program: List Logon or Logoff Scripts for a User
The Group Policy system in Windows stores logon and logoff scripts under the registry
keys HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\State\<User SID>
\Scripts\Logon and HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\
State\<User SID>\Scripts\Logoff. Each key has a subkey for each group policy object
that applies. Each of those child keys has another level of keys that correspond to indi-
vidual scripts that apply to the user.

This can be difficult to investigate when you don’t know the SID of the user in ques-
tion, so Example 24-1 automates the mapping of username to SID, as well as all the
registry manipulation tasks required to access this information.

406 | Chapter 24: Enterprise Computer Management

For more information about working with the Windows Registry in PowerShell, see
Chapter 18, The Windows Registry. For more information about running scripts, see
Recipe 1.1, “Run Programs, Scripts, and Existing Tools.”

Example 24-1. Get-UserLogonLogoffScript.ps1

##
##
Get-UserLogonLogoffScript.ps1
##
Get the logon or logoff scripts assigned to a specific user
##
ie:
##
PS >Get-UserLogonLogoffScript LEE-DESK\LEE Logon
##
##

param(
 $username = $(throw "Please specify a username"),
 $scriptType = $(throw "Please specify the script type")
)

Verify that they've specified a correct script type
$scriptOptions = "Logon","Logoff"
if($scriptOptions -notcontains $scriptType)
{
 $error = "Cannot convert value {0} to a script type. " +
 "Specify one of the following values and try again. " +
 "The possible values are ""{1}""."
 $ofs = ", "
 throw ($error -f $scriptType, ([string] $scriptOptions))
}

Find the SID for the username
$account = New-Object System.Security.Principal.NTAccount $username
$sid =
 $account.Translate([System.Security.Principal.SecurityIdentifier]).Value

Map that to their group policy scripts
$registryKey = "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\" +
 "Group Policy\State\$sid\Scripts"

Go through each of the policies in the specified key
foreach($policy in Get-ChildItem $registryKey\$scriptType)
{
 ## For each of the scripts in that policy, get its script name
 ## and parameters
 foreach($script in Get-ChildItem $policy.PsPath)
 {
 Get-ItemProperty $script.PsPath | Select Script,Parameters
 }
}

24.2 Program: List Startup or Shutdown Scripts for a Machine | 407

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Chapter 18, The Windows Registry

24.2 Program: List Startup or Shutdown Scripts for a
Machine

The Group Policy system in Windows stores startup and shutdown scripts under the
registry keys HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts\Startup
and HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts\Shutdown. Each key
has a subkey for each group policy object that applies. Each of those child keys has
another level of keys that correspond to individual scripts that apply to the machine.

Example 24-2 allows you to easily retrieve and access the startup and shutdown
scripts for a machine.

Example 24-2. Get-MachineStartupShutdownScript.ps1

##
##
Get-MachineStartupShutdownScript.ps1
##
Get the startup or shutdown scripts assigned to a machine
##
ie:
##
PS >Get-MachineStartupShutdownScript Startup
##
##

param(
 $scriptType = $(throw "Please specify the script type")
)

Verify that they've specified a correct script type
$scriptOptions = "Startup","Shutdown"
if($scriptOptions -notcontains $scriptType)
{
 $error = "Cannot convert value {0} to a script type. " +
 "Specify one of the following values and try again. " +
 "The possible values are ""{1}""."
 $ofs = ", "
 throw ($error -f $scriptType, ([string] $scriptOptions))
}

Store the location of the group policy scripts for the machine
$registryKey = "HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts"

408 | Chapter 24: Enterprise Computer Management

For more information about working with the Windows Registry in PowerShell, see
Chapter 18, The Windows Registry. For more information about running scripts, see
Recipe 1.1, “Run Programs, Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Chapter 18, The Windows Registry

24.3 Enable or Disable the Windows Firewall

Problem
You want to enable or disable the Windows Firewall.

Solution
To manage the Windows Firewall, use the LocalPolicy.CurrentProfile.
FirewallEnabled property of the HNetCfg.FwMgr COM object:

PS >$firewall = New-Object -com HNetCfg.FwMgr
PS >$firewall.LocalPolicy.CurrentProfile.FirewallEnabled = $true
PS >$firewall.LocalPolicy.CurrentProfile.FirewallEnabled
True

Discussion
The HNetCfg.FwMgr COM object provides programmatic access to the Windows Fire-
wall in Windows XP SP2 and later. The LocalPolicy.CurrentProfile property pro-
vides the majority of its functionality.

For more information about managing the Windows Firewall through its COM API,
visit http://msdn.microsoft.com and search for “Using Windows Firewall API.” The
documentation provides examples in VBScript but gives a useful overview of the
functionality available.

Go through each of the policies in the specified key
foreach($policy in Get-ChildItem $registryKey\$scriptType)
{
 ## For each of the scripts in that policy, get its script name
 ## and parameters
 foreach($script in Get-ChildItem $policy.PsPath)
 {
 Get-ItemProperty $script.PsPath | Select Script,Parameters
 }
}

Example 24-2. Get-MachineStartupShutdownScript.ps1 (continued)

24.4 Open or Close Ports in the Windows Firewall | 409

If you are unfamiliar with the VBScript-specific portions of the documentation, the
Microsoft Script Center provides a useful guide to help you convert from VBScript to
PowerShell. You can find that document at: http://www.microsoft.com/technet/
scriptcenter/topics/winpsh/convert/default.mspx.

For more information about working with COM objects in PowerShell, see Recipe
15.6, “Automate Programs Using COM Scripting Interfaces.”

See Also
• Recipe 15.6, “Automate Programs Using COM Scripting Interfaces”

24.4 Open or Close Ports in the Windows Firewall

Problem
You want to open or close ports in the Windows Firewall.

Solution
To open or close ports in the Windows Firewall, use the LocalPolicy.
CurrentProfile.GloballyOpenPorts collection of the HNetCfg.FwMgr COM object.

To add a port, create a HNetCfg.FWOpenPort COM object to represent the port, and
then add it to the GloballyOpenPorts collection:

$PROTOCOL_TCP = 6
$firewall = New-Object -com HNetCfg.FwMgr
$port = New-Object -com HNetCfg.FWOpenPort

$port.Name = "Webserver at 8080"
$port.Port = 8080
$port.Protocol = $PROTOCOL_TCP

$firewall.LocalPolicy.CurrentProfile.GloballyOpenPorts.Add($port)

To close a port, remove it from the GloballyOpenPorts collection:

$PROTOCOL_TCP = 6
$firewall.LocalPolicy.CurrentProfile.GloballyOpenPorts.Remove(8080, $PROTOCOL_TCP)

Discussion
The HNetCfg.FwMgr COM object provides programmatic access to the Windows Fire-
wall in Windows XP SP2 and later. The LocalPolicy.CurrentProfile property pro-
vides the majority of its functionality.

For more information about managing the Windows Firewall through its COM API,
visit http://msdn.microsoft.com and search for “Using Windows Firewall API.” The
documentation provides examples in VBScript but gives a useful overview of the
functionality available.

410 | Chapter 24: Enterprise Computer Management

If you are unfamiliar with the VBScript-specific portions of the documentation, the
Microsoft Script Center provides a useful guide to help you convert from VBScript to
PowerShell. You can find that document at http://www.microsoft.com/technet/
scriptcenter/topics/winpsh/convert/default.mspx.

For more information about working with COM objects in PowerShell, see Recipe
15.6, “Automate Programs Using COM Scripting Interfaces.”

See Also
• Recipe 15.6, “Automate Programs Using COM Scripting Interfaces”

24.5 Program: List All Installed Software
The best place to find information about currently installed software is actually from
the place that stores information about how to uninstall it: the HKLM:\SOFTWARE\
Microsoft\Windows\CurrentVersion\Uninstall registry key.

Each child of that registry key represents a piece of software you can uninstall—tra-
ditionally through the Add/Remove Programs entry in the Control Panel. In addi-
tion to the DisplayName of the application, other useful properties usually exist
(depending on the application). Examples include Publisher, UninstallString, and
HelpLink.

To see all the properties available from software installed on your system, type the
following:

$properties = Get-InstalledSoftware |
 Foreach-Object { $_.PsObject.Properties }

$properties | Select-Object Name | Sort-Object -Unique Name

This lists all properties mentioned by at least one installed application (although very
few are shared by all installed applications).

To work with this data, though, you first need to retrieve it. Example 24-3 provides a
script to list all installed software on the current system, returning all information as
properties of PowerShell objects.

Example 24-3. Get-InstalledSoftware.ps1

##
##
Get-InstalledSoftware.ps1
##
List all installed software on the current computer.
##
ie:
##

24.6 Uninstall an Application | 411

For more information about working with the Windows Registry in PowerShell, see
Chapter 18, The Windows Registry For more information about running scripts, see
Recipe 1.1, “Run Programs, Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Chapter 18, The Windows Registry

24.6 Uninstall an Application

Problem
You want to uninstall a specific software application.

Solution
To uninstall an application, use the Get-InstalledSoftware script provided in Recipe
24.5, “Program: List All Installed Software” to retrieve the command that uninstalls
the software. Since the UninstallString uses batch file syntax, use cmd.exe to launch
the uninstaller:

PS > $software = Get-InstalledSoftware UnwantedProgram
PS > cmd /c $software.UninstallString

PS >Get-InstalledSoftware PowerShell
##
##

param(
 $displayName = ".*"
)

Get all the listed software in the Uninstall key
$keys = Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

Get all of the properties from those items
$items = $keys | Foreach-Object { Get-ItemProperty $_.PsPath }

For each of those items, display the DisplayName and Publisher
foreach($item in $items)
{
 if(($item.DisplayName) -and ($item.DisplayName -match $displayName))
 {
 $item
 }
}

Example 24-3. Get-InstalledSoftware.ps1 (continued)

412 | Chapter 24: Enterprise Computer Management

Alternatively, use the Win32_Product WMI class for an unattended installation:

$application = Get-WmiObject Win32_Product -filter "Name='UnwantedProgram'"
$application.Uninstall()

Discussion
The UninstallString provided by applications starts the interactive experience you
would see if you were to uninstall the application through the Add/Remove Pro-
grams entry in the Control Panel. If you need to remove the software in an unattended
manner, you have two options: use the “quiet mode” of the application’s uninstaller
(for example, the /quiet switch to msiexec.exe), or use the software removal function-
ality of the Win32_Product WMI class as demonstrated in the solution.

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

• Recipe 24.5, “Program: List All Installed Software”

24.7 Manage Scheduled Tasks on a Computer

Problem
You want to schedule a task on a computer.

Solution
To manage scheduled tasks, use the schtasks.exe application.

To view the list of scheduled tasks:

PS >schtasks

TaskName Next Run Time Status
==================================== ======================== =============
Defrag C 03:00:00, 5/21/2007
User_Feed_Synchronization-{CA4D6D9C- 18:34:00, 5/20/2007
User_Feed_Synchronization-{CA4D6D9C- 18:34:00, 5/20/2007

To schedule a task to defragment C: every day at 3:00 a.m.:

schtasks /create /tn "Defrag C" /sc DAILY `
 /st 03:00:00 /tr "defrag c:" /ru Administrator

To remove a scheduled task by name:

schtasks /delete /tn "Defrag C"

24.8 Retrieve Printer Information | 413

Discussion
The example in the solution tells the system to defragment C: every day at 3:00 a.m..
It runs this command under the Administrator account, since the defrag.exe com-
mand requires administrative privileges. In addition to scheduling tasks on the local
computer, the schtasks.exe application also allows you to schedule tasks on remote
computers.

On Windows Vista, the schtasks.exe application has been enhanced to support
event triggers, conditions, and additional settings.

For more information about the schtasks.exe application, type schtasks /?.

24.8 Retrieve Printer Information

Problem
You want to get information about printers on the current system.

Solution
To retrieve information about printers attached to the system, use the Win32_Printer
WMI class:

PS >Get-WmiObject Win32_Printer | Select-Object Name,PrinterStatus

Name PrinterStatus
---- -------------
Microsoft Office Document Image Wr... 3
Microsoft Office Document Image Wr... 3
CutePDF Writer 3
Brother DCP-1000 3

To retrieve information about a specific printer, apply a filter based on its name:

PS >$device = Get-WmiObject Win32_Printer -Filter "Name='Brother DCP-1000'"
PS >$device | Format-List *

Status : Unknown
Name : Brother DCP-1000
Attributes : 588
Availability :
AvailableJobSheets :
AveragePagesPerMinute : 0
Capabilities : {4, 2, 5}
CapabilityDescriptions : {Copies, Color, Collate}
Caption : Brother DCP-1000
(...)

414 | Chapter 24: Enterprise Computer Management

To retrieve specific properties, access as you would access properties on other Power-
Shell objects:

PS >$device.VerticalResolution
600
PS >$device.HorizontalResolution
600

Discussion
The example in the solution uses the Win32_Printer WMI class to retrieve infor-
mation about installed printers on the computer. While the Win32_Printer class
gives access to most commonly used information, WMI supports several other
printer-related classes: Win32_TCPIPPrinterPort, Win32_PrinterDriver, CIM_Printer,
Win32_PrinterConfiguration, Win32_PrinterSetting, Win32_PrinterController,
Win32_PrinterShare, and Win32_PrinterDriverDll. For more information about
working with WMI in PowerShell, see Recipe 15.1, “Access Windows Manage-
ment Instrumentation Data.”

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

24.9 Retrieve Printer Queue Statistics

Problem
You want to get information about print queues for printers on the current system.

Solution
To retrieve information about printers attached to the system, use the Win32_
PerfFormattedData_Spooler_PrintQueue WMI class:

PS >Get-WmiObject Win32_PerfFormattedData_Spooler_PrintQueue |
>> Select Name,TotalJobsPrinted
>>

Name TotalJobsPrinted
---- ----------------
Microsoft Office Document Image Wr... 0
Microsoft Office Document Image Wr... 0
CutePDF Writer 0
Brother DCP-1000 2
_Total 2

To retrieve information about a specific printer, apply a filter based on its name, as
shown in Example 24-4.

24.9 Retrieve Printer Queue Statistics | 415

To retrieve specific properties, access as you would access properties on other Power-
Shell objects:

PS >$stats.TotalJobsPrinted
2

Discussion
The Win32_PerfFormattedData_Spooler_PrintQueue WMI class provides access to the
various Windows performance counters associated with print queues. Because of
this, you can also access them through the .NET Framework, as mentioned in Recipe
15.8, “Access Windows Performance Counters”:

$printer = "Brother DCP-1000"
$pc = New-Object Diagnostics.PerformanceCounter "Print Queue","Jobs",$printer
$pc.NextValue()

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

Example 24-4. Retrieving information about a specific printer

PS >$queueClass = "Win32_PerfFormattedData_Spooler_PrintQueue"
PS >$filter = "Name='Brother DCP-1000'"
PS >$stats = Get-WmiObject $queueClass -Filter $filter
PS >$stats | Format-List *

AddNetworkPrinterCalls : 129
BytesPrintedPersec : 0
Caption :
Description :
EnumerateNetworkPrinterCalls : 0
Frequency_Object :
Frequency_PerfTime :
Frequency_Sys100NS :
JobErrors : 0
Jobs : 0
JobsSpooling : 0
MaxJobsSpooling : 1
MaxReferences : 3
Name : Brother DCP-1000
NotReadyErrors : 0
OutofPaperErrors : 0
References : 2
Timestamp_Object :
Timestamp_PerfTime :
Timestamp_Sys100NS :
TotalJobsPrinted : 2
TotalPagesPrinted : 0

416 | Chapter 24: Enterprise Computer Management

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

• Recipe 15.8, “Access Windows Performance Counters”

24.10 Manage Printers and Print Queues

Problem
You want to clear pending print jobs from a printer.

Solution
To manage printers attached to the system, use the Win32_Printer WMI class. By
default, the WMI class lists all printers:

PS >Get-WmiObject Win32_Printer | Select-Object Name,PrinterStatus

Name PrinterStatus
---- -------------
Microsoft Office Document Image Wr... 3
Microsoft Office Document Image Wr... 3
CutePDF Writer 3
Brother DCP-1000 3

To clear the print queue of a specific printer, apply a filter based on its name and call
the CancelAllJobs() method:

PS >$device = Get-WmiObject Win32_Printer -Filter "Name='Brother DCP-1000'"
PS >$device.CancelAllJobs()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 5

Discussion
The example in the solution uses the Win32_Printer WMI class to cancel all jobs for a
printer. In addition to cancelling all print jobs, the Win32_Printer class supports
other tasks:

24.11 Determine Whether a Hotfix Is Installed | 417

PS >$device | Get-Member -MemberType Method

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_Printer

Name MemberType Definition
---- ---------- ----------
CancelAllJobs Method System.Management.ManagementBaseObject Can...
Pause Method System.Management.ManagementBaseObject Pau...
PrintTestPage Method System.Management.ManagementBaseObject Pri...
RenamePrinter Method System.Management.ManagementBaseObject Ren...
Reset Method System.Management.ManagementBaseObject Res...
Resume Method System.Management.ManagementBaseObject Res...
SetDefaultPrinter Method System.Management.ManagementBaseObject Set...
SetPowerState Method System.Management.ManagementBaseObject Set...

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

24.11 Determine Whether a Hotfix Is Installed

Problem
You want to determine whether a specific hotfix is installed on a system.

Solution
To retrieve a list of hotfixes applied to the system, use the Win32_
QuickfixEngineering WMI class:

PS >Get-WmiObject Win32_QuickfixEngineering -Filter "HotFixID='KB925228'"

Description : Windows PowerShell(TM) 1.0
FixComments :
HotFixID : KB925228
Install Date :
InstalledBy :
InstalledOn :
Name :
ServicePackInEffect : SP3
Status :

To determine whether a specific fix is applied, use the Test-HotfixInstallation
script provided in Example 24-5:

418 | Chapter 24: Enterprise Computer Management

PS >Test-HotfixInstallation KB925228 LEE-DESK
True
PS >Test-HotfixInstallation KB92522228 LEE-DESK
False

Discussion
Example 24-5 lets you determine whether a hotfix is installed on a specific system. It
uses the Win32_QuickfixEngineering WMI class to retrieve this information.

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.” For more information about
running scripts, see Recipe 1.1, “Run Programs, Scripts, and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 15.1, “Access Windows Management Instrumentation Data”

Example 24-5. Test-HotfixInstallation.ps1

##
##
Test-HotfixInstallation.ps1
##
Determine if a hotfix is installed on a computer
##
ie:
##
PS >Test-HotfixInstallation KB925228 LEE-DESK
True
##
##

param(
 $hotfix = $(throw "Please specify a hotfix ID"),
 $computer = "."
)

Create the WMI query to determine if the hotfix is installed
$filter = "HotFixID='$hotfix'"
$results = Get-WmiObject Win32_QuickfixEngineering `
 -Filter $filter -Computer $computer

Return the results as a boolean, which tells us if the hotfix is installed
[bool] $results

24.12 Program: Summarize System Information | 419

24.12 Program: Summarize System Information
WMI provides an immense amount of information about the current system or
remote systems. In fact, the msinfo32.exe application traditionally used to gather sys-
tem information is based largely on WMI.

The script shown in Example 24-6 summarizes the most common information, but
WMI provides a great deal more than that. For a list of other commonly used WMI
classes, see Appendix F, WMI Reference. For more information about working with
WMI in PowerShell, see Recipe 15.1, “Access Windows Management Instrumenta-
tion Data.”

Example 24-6. Get-DetailedSystemInformation.ps1

##
##
Get-DetailedSystemInformation.ps1
##
Get detailed information about a system.
##
ie:
##
PS >Get-DetailedSystemInformation LEE-DESK > output.txt
##
##

param(
 $computer = "."
)

"#"*80
"System Information Summary"
"Generated $(Get-Date)"
"#"*80
""
""

"#"*80
"Computer System Information"
"#"*80
Get-WmiObject Win32_ComputerSystem -Computer $computer | Format-List *

"#"*80
"Operating System Information"
"#"*80
Get-WmiObject Win32_OperatingSystem -Computer $computer | Format-List *

"#"*80
"BIOS Information"
"#"*80
Get-WmiObject Win32_Bios -Computer $computer | Format-List *

420 | Chapter 24: Enterprise Computer Management

For more information about running scripts, see Recipe 1.1, “Run Programs, Scripts,
and Existing Tools.”

See Also
• Recipe 1.1, “Run Programs, Scripts, and Existing Tools”

• Recipe 15.1, “Access Windows Management Instrumentation Data”

• Appendix F, WMI Reference

24.13 Renew a DHCP Lease

Problem
You want to renew the DHCP lease for a connection on a computer.

Solution
To renew DHCP leases, use the ipconfig application. To renew the lease on all
connections:

PS >ipconfig /renew

To renew the lease on a specific connection:

PS >ipconfig /renew "Wireless Network Connection 4"

Discussion
The standard ipconfig application works well to manage network configuration
options on a local machine. To renew the lease on a remote computer, you have two
options.

"#"*80
"Memory Information"
"#"*80
Get-WmiObject Win32_PhysicalMemory -Computer $computer | Format-List *

"#"*80
"Physical Disk Information"
"#"*80
Get-WmiObject Win32_DiskDrive -Computer $computer | Format-List *

"#"*80
"Logical Disk Information"
"#"*80
Get-WmiObject Win32_LogicalDisk -Computer $computer | Format-List *

Example 24-6. Get-DetailedSystemInformation.ps1 (continued)

24.14 Assign a Static IP Address | 421

Use the Win32_NetworkAdapterConfiguration WMI class

To renew the lease on a remote computer, use the Win32_
NetworkAdapterConfiguration WMI class. The WMI class requires that you know the
description of the network adapter, so first obtain that by reviewing the output of
Get-WmiObject Win32_NetworkAdapterConfiguration –Computer <ComputerName>:

PS >Get-WmiObject Win32_NetworkAdapterConfiguration –Computer LEE-DESK

(...)
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with (...)
Index : 13
(...)

Knowing which adapter you want to renew, call its RenewDHCPLease() method:

$description = "Linksys Wireless-G USB"
$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration –Computer LEE-DESK |
 Where-Object { $_.Description –match $description}
$adapter.RenewDHCPLease()

Run ipconfig on the remote computer

Another way to renew the DHCP lease on a remote computer is to use the solution
offered by Recipe 21.4, “Program: Invoke a PowerShell Expression on a Remote
Machine”:

PS >Invoke-RemoteExpression \\LEE-DESK { ipconfig /renew }

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

• Recipe 21.4, “Program: Invoke a PowerShell Expression on a Remote Machine”

24.14 Assign a Static IP Address

Problem
You want to assign a static IP address to a computer.

422 | Chapter 24: Enterprise Computer Management

Solution
Use the Win32_NetworkAdapterConfiguration WMI class to manage network settings
for a computer:

$description = "Linksys Wireless-G USB"
$staticIp = "192.168.1.100"
$subnetMask = "255.255.255.0"
$gateway = "192.168.1.1"

$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration –Computer LEE-DESK |
 Where-Object { $_.Description –match $description}
$adapter.EnableStatic($staticIp, $subnetMask)
$adapter.SetGateways($gateway, [UInt16] 1)

Discussion
When managing network settings for a computer, the Win32_NetworkAdapter
Configuration WMI class requires that you know the description of the network adapter.
Obtain that by reviewing the output of Get-WmiObject Win32_
NetworkAdapterConfiguration –Computer <ComputerName>:

PS >Get-WmiObject Win32_NetworkAdapterConfiguration –Computer LEE-DESK

(...)
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with (...)
Index : 13
(...)

Knowing which adapter you want to renew, you can now call methods on that object
as illustrated in the solution. To enable DHCP on an adapter again, use the
EnableDHCP() method:

PS >$adapter.EnableDHCP()

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

24.15 List All IP Addresses for a Computer | 423

24.15 List All IP Addresses for a Computer

Problem
You want to list all IP addresses for a computer.

Solution
To list IP addresses assigned to a computer, use the ipconfig application:

PS >ipconfig

Discussion
The standard ipconfig application works well to manage network configuration
options on a local machine. To view IP addresses on a remote computer, you have
two options.

Use the Win32_NetworkAdapterConfiguration WMI class

To view IP addresses a remote computer, use the Win32_NetworkAdapterConfiguration
WMI class. Since that lists all network adapters, use the Where-Object cmdlet to
restrict the results to those with an IP address assigned to them:

PS >Get-WmiObject Win32_NetworkAdapterConfiguration –Computer LEE-DESK |
>> Where-Object { $_.IpEnabled }
>>

DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooste
 r v2 - Packet Scheduler Miniport
Index : 13

Run ipconfig on the remote computer

Another way to view the IP addresses of a remote computer is to use the solution
offered by Recipe 21.4, “Program: Invoke a PowerShell Expression on a Remote
Machine”:

PS >Invoke-RemoteExpression \\LEE-DESK { ipconfig }

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

424 | Chapter 24: Enterprise Computer Management

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

• Recipe 21.4, “Program: Invoke a PowerShell Expression on a Remote Machine”

24.16 List Network Adapter Properties

Problem
You want to retrieve information about network adapters on a computer.

Solution
To retrieve information about network adapters on a computer, use the Win32_
NetworkAdapterConfiguration WMI class:

Get-WmiObject Win32_NetworkAdapterConfiguration –Computer <ComputerName>

To list only those with IP addresses assigned to them, use the Where-Object cmdlet to
filter on the IpEnabled property:

PS >Get-WmiObject Win32_NetworkAdapterConfiguration –Computer LEE-DESK |
>> Where-Object { $_.IpEnabled }
>>

DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooste
 r v2 - Packet Scheduler Miniport
Index : 13

Discussion
The solution uses the Win32_NetworkAdapterConfiguration WMI class to retrieve
information about network adapters on a given system. By default, PowerShell dis-
plays only the most important information about the network adapter but provides
access to much more.

To see all information available, use the Format-List cmdlet, as shown in
Example 24-7.

Example 24-7. Using the Format-List cmdlet to see detailed information about a network adapter

PS >$adapter = Get-WmiObject Win32_NetworkAdapterConfiguration |
>> Where-Object { $_.IpEnabled }
>>
PS >$adapter

24.16 List Network Adapter Properties | 425

To retrieve specific properties, access as you would access properties on other Power-
Shell objects:

PS >$adapter.MacAddress
00:12:17:77:B4:EB

For more information about working with WMI in PowerShell, see Recipe 15.1,
“Access Windows Management Instrumentation Data.”

See Also
• Recipe 15.1, “Access Windows Management Instrumentation Data”

DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooste
 r v2 - Packet Scheduler Miniport
Index : 13

PS >$adapter | Format-List *

DHCPLeaseExpires : 20070521221927.000000-420
Index : 13
Description : Linksys Wireless-G USB Network Adapter with
 SpeedBooster v2 - Packet Scheduler Minipor
 t
DHCPEnabled : True
DHCPLeaseObtained : 20070520221927.000000-420
DHCPServer : 192.168.1.1
DNSDomain : hsd1.wa.comcast.net.
DNSDomainSuffixSearchOrder :
DNSEnabledForWINSResolution : False
DNSHostName : Lee-Desk
DNSServerSearchOrder : {68.87.69.146, 68.87.85.98}
DomainDNSRegistrationEnabled : False
FullDNSRegistrationEnabled : True
IPAddress : {192.168.1.100}
IPConnectionMetric : 25
IPEnabled : True
IPFilterSecurityEnabled : False
WINSEnableLMHostsLookup : True
(...)

Example 24-7. Using the Format-List cmdlet to see detailed information about a network adapter

426

Chapter 25CHAPTER 25

Manage an Exchange 2007 Server 26

25.0 Introduction
Point-and-click management has long been the stereotype of Windows administra-
tion. While it has always been possible to manage portions of Windows (or other
applications) through the command line, support usually comes as an afterthought.
Once all the administration support has been added to the user interface, the devel-
opers of an application might quickly cobble together a COM API or command-line
tool if you are lucky. If you aren’t lucky, they might decide only to publish some reg-
istry key settings, or perhaps nothing at all.

This inequality comes almost naturally from implementing a management model as
an afterthought: with a fully functional user interface complete, very few application
developers deem fully functional scriptable administration to be a high priority.

And then there’s Exchange 2007.

In contrast to those who cobble together a management model only after completing
the user interface, the Exchange 2007 team wrote their management infrastructure
first. In Exchange 2007, it’s not only a first-class feature—it’s a way of life. Exchange
2007 includes nearly 400 cmdlets to let you manage Exchange systems. Not only is
the magnitude stunning, but its breadth and depth is as well. To guarantee full cov-
erage by way of PowerShell cmdlets, the Exchange Management Console user inter-
face builds itself completely on top of PowerShell cmdlets.

Any command that affects the Exchange environment does so through one of the
included Exchange Management cmdlets.

The benefit of this model is immense. It doesn’t matter whether you are working
with users, groups, mailboxes, or anything else in Exchange: you can automate it all.

25.2 Automate Wizard-Guided Tasks | 427

25.1 Experiment with Exchange Management Shell

Problem
You want to experiment with the features and functionality of the Exchange Man-
agement Shell without working on a production system.

Solution
To explore the Exchange Management Shell, use the shell-focused Exchange 2007
Microsoft Virtual Lab.

Discussion
Microsoft recently introduced virtual labs as a core technology to help you experi-
ment with new technologies. Exchange 2007 offers several of these labs. The one
that applies to the Exchange Management Shell is called “Exchange Server 2007:
Using the Exchange Server 2007 Management Console and Shell Virtual Lab.”

To launch this lab, visit the Technet Virtual Labs home page at http://www.microsoft.
com/technet/traincert/virtuallab/default.mspx. In the Virtual Labs by Product section,
click Exchange Server; then select Exchange Server 2007: Using the Exchange Server
2007 Management Console and Shell.

After registering, a virtual lab launches that gives you an environment in which to
experiment (see Figure 25-1). Click Start ➝ All Programs ➝ Microsoft Exchange Server
2007 ➝ Exchange Management Shell to launch the Exchange Management Shell.

25.2 Automate Wizard-Guided Tasks

Problem
You want to automate tasks you normally complete through one of the wizards in
the Exchange Management Console.

Solution
To automate a wizard-guided task, complete the wizard in the Exchange Manage-
ment Shell, and then save the script it displays for future reference.

Discussion
Since the Exchange Management Console user interface uses PowerShell cmdlets to
accomplish all its actions, every wizard displays the PowerShell script that you could
run to accomplish the same task.

428 | Chapter 25: Manage an Exchange 2007 Server

Launch the Exchange Management Console, and then click Recipient Configuration
➝ Mailbox. In the Actions pane, click New Mailbox. Select User Mailbox ➝ Exist-
ing User ➝ Preeda Ola. Type preeda as an alias, and then complete the wizard. The
final step provides the PowerShell command that you can use next time, as shown in
Figure 25-2.

25.3 Manage Exchange Users

Problem
You want to get and modify information about user domain accounts from the
Exchange Management Shell.

Solution
To get and set information about Active Directory users, use the Get-User and Set-
User cmdlets, respectively:

$user = Get-User *preeda*
$user | Format-List *

Figure 25-1. Exchange Server 2007 virtual lab

25.3 Manage Exchange Users | 429

To update Preeda’s title to Senior Vice President:

$user | Set-User –Title "Senior Vice President"
$user.Title

Discussion
Active Directory accounts are an integral part of working with Exchange 2007. While
you will often want to modify the mailboxes of domain users, Get-User and Set-User
lets you work with the user accounts themselves.

For more information about the Get-User cmdlet, type Get-Help Get-User. For more
information about the Set-User cmdlet, type Get-Help Set-User.

Figure 25-2. Script Wizard in Exchange 2007

430 | Chapter 25: Manage an Exchange 2007 Server

25.4 Manage Mailboxes

Problem
You want to get and modify information about mailboxes from the Exchange Man-
agement Shell.

Solution
To retrieve information about a mailbox (or multiple mailboxes), use the Get-
Mailbox cmdlet:

$user = Get-Mailbox *preeda*
$user | Format-List *

To modify information about a mailbox, use the Set-Mailbox cmdlet. This example pre-
vents Preeda from sending mail when her mailbox goes over 2 GB, and then verifies it:

$user | Set-Mailbox –ProhibitSendQuota 2GB
$user | Get-Mailbox

Discussion
In addition to the common task of retrieving and modifying mailbox information,
another useful mailbox-related command is the Move-Mailbox cmdlet. For example,
to move all users from one storage group to another database:

Get-Mailbox |
 Where-Object { $_.Database –like "*SMBEX01\First Storage Group" } |
 Move-Mailbox –TargetDatabase "Mailbox Database 3"

After a few moments, that command displays the progress of the bulk mailbox move,
as shown in Figure 25-3.

Figure 25-3. The Move-Mailbox cmdlet in action

25.6 Manage Transport Rules | 431

For more information about the Get-Mailbox cmdlet, type Get-Help Get-Mailbox. For
more information about the Set-Mailbox cmdlet, type Get-Help Set-Mailbox. For
more information about the Move-Mailbox cmdlet, type Get-Help Move-Mailbox.

25.5 Manage Distribution Groups

Problem
You want to get and modify information about distribution groups from the
Exchange Management Shell.

Solution
To retrieve information about a distribution group, or distribution groups, use the
Get-DistributionGroup cmdlet:

$group = Get-DistributionGroup "Stock Traders"
$group | Format-List *

To modify information about a group, use the Set-DistributionGroup cmdlet. This
example updates the Stock Traders distribution group to accept messages only from
other members of the Stock Traders distribution group:

$group | Set-DistributionGroup –AcceptMessagesOnlyFromDLMembers "Stock Traders"

To add a user to a distribution group, use the Add-DistributionGroupMember cmdlet:

$group | Add-DistributionGroupMember –Member *preeda*

To list members of a distribution group, use the Get-DistributionGroupMember
cmdlet:

$group | Get-DistributionGroupMember

Discussion
For more information about the Get-DistributionGroup cmdlet, type Get-Help Get-
DistributionGroup. For more information about the Set-DistributionGroup cmdlet,
type Get-Help Set-DistributionGroup. For more information about the Add-
DistributionGroupMember cmdlet, type Get-Help Add-DistributionGroupMember. For
more information about the Get-DistributionGroupMember cmdlet, type Get-Help
Get-DistributionGroupMember.

25.6 Manage Transport Rules

Problem
You want to manage transport rules applied to incoming or outgoing mail.

432 | Chapter 25: Manage an Exchange 2007 Server

Solution
To create transport rules on the server, use the New-TransportRule cmdlet, as shown
in Example 25-1.

Discussion
The New-TransportRule cmdlet adds transport rules on the server. A transport rule is a
collection of predicates and actions—conditions and actions that apply to the rule.

In the example given by the solution, we add a rule that warns internal users about
the dangers of unexpected attachments received from the outside world. For more
information about the New-TransportRule cmdlet, type Get-Help New-TransportRule.

25.7 Manage Outlook Web Access

Problem
You want to get and modify Outlook Web Access settings from the Exchange Man-
agement Shell.

Solution
To retrieve information about an Outlook Web Access virtual directory, use the Get-
OwaVirtualDirectory cmdlet:

$owa = Get-OwaVirtualDirectory "owa (Default Web Site)"

To modify information about that virtual directory, use the Set-OwaVirtualDirectory
cmdlet. This example prevents users from changing their passwords through Out-
look Web Access:

$owa | Set-OwaVirtualDirectory –ChangePasswordEnabled:$false

Example 25-1. Creating a new transport rule

$from = Get-TransportRulePredicate FromScope
$from.Scope = "NotInOrganization"

$attachmentSize = Get-TransportRulePredicate AttachmentSizeOver
$attachmentSize.Size = 0

$action = Get-TransportRuleAction ApplyDisclaimer
$action.Text = "Warning: Only open attachments you were already expecting."

New-TransportRule -Name "Attachment Warning" `
 -Conditions $from,$attachmentSize -Action $action -Enabled:$true

25.7 Manage Outlook Web Access | 433

Discussion
For more information about the Get-OwaVirtualDirectory cmdlet, type Get-Help
Get-OwaVirtualDirectory. For more information about the Set-OwaVirtualDirectory
cmdlet, type Get-Help Set-OwaVirtualDirectory.

434

Chapter 26CHAPTER 26

Manage an Operations Manager 2007
Server 27

26.0 Introduction
Like Exchange 2007, System Center Operations Manager 2007 (previously known as
Microsoft Operations Manager) broadly adopts PowerShell as a technique for auto-
mated management. Operations Manager 2007 takes a dual-pronged approach to
this. It includes a set of more than 70 PowerShell cmdlets, as well as a PowerShell
provider that lets you scope commands to (and navigate) management groups.

The most common management tasks in Operations Manager 2007 fall largely into
one of several categories: managing agents, management packs, rules, tasks, alerts,
and maintenance windows.

26.1 Experiment with the Command Shell

Problem
You want to experiment with the features and functionality of the Operations Man-
ager Command Shell without working on a production system.

Solution
To explore the Operations Manager Command Shell, use the Microsoft Forefront
and System Center Demonstration Toolkit.

Discussion
Downloadable Virtual PC images and online virtual labs have recently become an
incredibly effective means by which you can experiment with new technologies. The
Microsoft System Center application suite offers several Virtual PC images for down-
load, one of them tailored to Forefront Security and its interaction with the rest of
the System Center family. The Oxford computer in this virtual lab represents a com-

26.2 Manage Operations Manager Agents | 435

puter running System Center Operations Manager 2007, which provides an excel-
lent avenue for exploration of this new technology.

To download this demonstration toolkit, visit the Microsoft download page at http://
download.microsoft.com. Then, search for “System Center demonstration toolkit.”

After registering, download all the files for the demonstration toolkit and launch the
included installer. Once the installation completes, visit the VMImages directory in
the installation directory and launch the Oxford demo virtual machine.

Once the machine loads, Click Start ➝ All Programs ➝ System Center Operations
Manager 2007 ➝ Command Shell to launch the Operations Manager Command
Shell, as shown in Figure 26-1.

26.2 Manage Operations Manager Agents

Problem
You want to manage Operations Manager agents on remote machines.

Solution
To retrieve information about installed agents, use the Get-Agent cmdlet:

PS Monitoring:\Oxford.contoso.com
>Get-Agent | Select-Object DisplayName

DisplayName

Ibiza.contoso.com
Denver.contoso.com
Sydney.contoso.com

To remove an agent, use the Uninstall-Agent cmdlet:

Figure 26-1. System Center Operations Manager Command Shell

436 | Chapter 26: Manage an Operations Manager 2007 Server

PS Monitoring:\Oxford.contoso.com
>Get-Agent | Where-Object { $_.DisplayName -match "Denver" } |
>> Uninstall-Agent

To install an agent on a specific computer, use the Install-AgentByName function:

PS Monitoring:\Oxford.contoso.com
>Install-AgentByName Oxford.contoso.com

Discussion
The Get-Agent cmdlet returns a great deal of information about each agent it
retrieves. The example in the solution filters this to show only the DisplayName, but
you may omit the Select-Object cmdlet to retrieve all information about that agent.

If you need more control over the agent installation process, examine the content of
the Install-AgentByName function:

PS Monitoring:\Oxford.contoso.com
>Get-Content Function:\Install-AgentByName

The function simplifies the most common scenario for installing agents, but the
Install-Agent cmdlet that supports it provides additional functionality.

For more information about the Get-Agent cmdlet, type Get-Help Get-Agent. For
more information about the Install-Agent cmdlet, type Install-Agent. For more
information about the Uninstall-Agent cmdlet, type Get-Help Uninstall-Agent.

26.3 Schedule a Maintenance Window

Problem
You want to place a server in maintenance mode to prevent it from generating incor-
rect alerts.

Solution
To schedule a maintenance window on a computer, use the New-MaintenanceWindow
cmdlet:

$computer = Get-Agent | Where-Object { $_.Name -match "Denver" }
$computer.HostComputer | New-MaintenanceWindow `
 -StartTime (Get-Date) `
 -EndTime (Get-Date).AddMinutes(5) `
 -Comment "Security updates"

To retrieve information about that maintenance window, use the Get-
MaintenanceWindow cmdlet:

>$computer.HostComputer | Get-MaintenanceWindow

MonitoringObjectId : a542ffe8-91a2-84a6-37b0-0555b15513bd

26.4 Get, Install, and Uninstall Management Packs | 437

StartTime : 5/22/2007 9:27:23 AM
ScheduledEndTime : 5/22/2007 9:32:23 AM
EndTime :
Reason : PlannedOther
Comments : Security updates
User : CONTOSO\Administrator
LastModified : 5/22/2007 9:27:23 AM
ManagementGroup : MMS
ManagementGroupId : 846c0974-7fd0-58f2-8020-400f125beb67

To stop maintenance mode, use the Set-MaintenanceWindow cmdlet to end the main-
tenance window immediately:

$computer.HostComputer | Set-MaintenanceWindow -EndTime (Get-Date)

Discussion
For more information about the New-MaintenanceWindow cmdlet, type Get-Help New-
MaintenanceWindow. For more information about the Get-MaintenanceWindow cmdlet,
type Get-Help Get-MaintenanceWindow. For more information about the Set-
MaintenanceWindow cmdlet, type Get-Help Set-MaintenanceWindow.

26.4 Get, Install, and Uninstall Management Packs

Problem
You want to automate the deployment or configuration of management packs.

Solution
To retrieve information about installed management packs, use the Get-
ManagementPack cmdlet, as shown in Example 26-1.

Example 26-1. Using the Get-ManagementPack cmdlet

PS Monitoring:\Oxford.contoso.com
>$mp = Get-ManagementPack | Where-Object { $_.DisplayName -eq "Health Internal Library" }
PS Monitoring:\Oxford.contoso.com
>$mp

Name : System.Health.Internal
TimeCreated : 5/22/2007 9:38:40 AM
LastModified : 5/22/2007 9:38:40 AM
KeyToken : 31bf3856ad364e35
Version : 6.0.5000.0
Id : 9395a1eb-6322-1c8b-71ad-7ab6955c7e11
VersionId : dfaeece9-437e-7d46-edce-260bd77a8667
References : {System.Library, System.Health.Library}
Sealed : True

438 | Chapter 26: Manage an Operations Manager 2007 Server

Use the Uninstall-ManagementPack cmdlet to remove a management pack:

$mp = Get-ManagementPack | Where-Object { $_.DisplayName -eq "Management Pack Name" }
$mp | Uninstall-ManagementPack

To install a management pack, provide its path to the Install-ManagementPack
cmdlet:

Install-ManagementPack <PathToManagementPack>

Discussion
For more information about the Get-ManagementPack cmdlet, type Get-Help Get-
ManagementPack. For more information about the Install-ManagementPack cmdlet,
type Get-Help Install-ManagementPack. For more information about the Uninstall-
ManagementPack cmdlet, type Get-Help Uninstall-ManagementPack.

26.5 Enable or Disable Rules

Problem
You want to enable or disable rules not sealed in a management pack.

Solution
To retrieve a rule, use the Get-Rule:

$rule = Get-Rule | Where-Object { $_.DisplayName –match "RuleName" }

Then, use the Enable-Rule or Disable-Rule cmdlet to enable or disable that rule,
respectively:

$rule | Enable-Rule
$rule | Disable-Rule

Discussion
For more information about the Get-Rule cmdlet, type Get-Help Get-Rule. For more
information about the Disable-Rule cmdlet, type Get-Help Disable-Rule. For more
information about the Enable-Rule cmdlet, type Get-Help Enable-Rule.

ContentReadable : False
FriendlyName : System Health Internal Library
DisplayName : Health Internal Library
Description : System Health Interal Library: This Management Pack (...)
DefaultLanguageCode : ENU
LockObject : System.Object

Example 26-1. Using the Get-ManagementPack cmdlet (continued)

26.7 Manage Alerts | 439

26.6 List and Start Tasks

Problem
You want to list all the tasks allowed in a monitoring object, and then invoke one.

Solution
To retrieve cmdlets allowed for the current monitoring object, use the Get-Task
cmdlet:

$task = Get-Task | Where-Object { $_.DisplayName –match "TaskName" }

Then use the Start-Task cmdlet to start the task:

$task | Start-Task

Discussion
The Get-Task cmdlet retrieves tasks specific to the monitoring object that applies to
the current path. To change the list of tasks the cmdlet returns, navigate to the direc-
tory that represents the monitoring object you want to manage.

For more information about the Get-Task cmdlet, type Get-Help Get-Task. For more
information about the Start-Task cmdlet, type Get-Help Start-Task.

26.7 Manage Alerts

Problem
You want to retrieve and manage alerts in the current monitoring object.

Solution
To retrieve alerts on the current monitoring object, use the Get-Alert cmdlet. To
retrieve only active alerts, apply a filter to include only those with a ResolutionState
of 0.

>Get-Alert | Where-Object { $_.ResolutionState -eq 0 } | Select-Object Description

Description

The process started at 2:15:56 AM failed to create System.Discovery.Data, no error
The process started at 2:05:23 PM failed to create System.Discovery.Data. Errors
MSExchangeIS service is stopped. This may be caused by missing patch KB 915786.
The computer Ibiza.contoso.com was not pingable.
The computer Sydney.contoso.com was not pingable.

440 | Chapter 26: Manage an Operations Manager 2007 Server

To resolve an alert, pipe it to the Resolve-Alert cmdlet. For example, to clean up the
alert entries in bulk:

Get-Alert | Where-Object { $_.ResolutionState -eq 0 } | Resolve-Alert

Discussion
For more information about the Get-Alert cmdlet, type Get-Help Get-Alert. For
more information about the Resolve-Alert cmdlet, type Get-Help Resolve-Alert.

PART V

V.References

Appendix A, PowerShell Language and Environment

Appendix B, Regular Expression Reference

Appendix C, PowerShell Automatic Variables

Appendix D, Standard PowerShell Verbs

Appendix E, Selected .NET Classes and Their Uses

Appendix F, WMI Reference

Appendix G, Selected COM Objects and Their Uses

Appendix H, .NET String Formatting

Appendix I, .NET DateTime Formatting

443

Appendix A APPENDIX A

PowerShell Language and Environment1

Commands and Expressions
PowerShell breaks any line that you enter into its individual units (tokens), and then
interprets each token in one of two ways: as a command or as an expression. The dif-
ference is subtle: expressions support logic and flow control statements (such as if,
foreach, and throw) while commands do not.

You will often want to control the way that Windows PowerShell interprets your
statements, so Table A-1 lists the options available to you.

Table A-1. Windows PowerShell evaluation controls

Statement Example Explanation

Precedence control: () PS >5 * (1 + 2)
15
PS >(dir).Count
2276

Forces the evaluation of a command or
expression, similar to the way that paren-
theses are used to force the order of evalu-
ation in a mathematical expression.

Expression subparse: $() PS >"The answer is (2+2)"
The answer is (2+2)

PS >"The answer is $(2+2)"
The answer is 4

PS >$value = 10
PS >$result = $(
>> if($value -gt 0) { $true }
> else { $false }
>>)
>>
PS >$result
True

Forces the evaluation of a command or
expression, similar to the way that paren-
theses are used to force the order of evalu-
ation in a mathematical expression.

However, a subparse is as powerful as a
subprogram, and is required only when it
contains logic or flow control statements.

This statement is also used to expand
dynamic information inside a string.

444 | Appendix A: PowerShell Language and Environment

Comments
To create single-line comments, begin a line with the # character. Windows Power-
Shell does not support multiline comments, but you can deactivate larger regions of
your script by placing them in a here string:

This is a regular comment

Start of the here string
$null = @"
function MyTest
{
 "This should not be considered a function"
}

$myVariable = 10;
"@
End of the here string

This is regular script again

See the “Strings” seaction later in this chapter, to learn more about
here strings.

Variables
Windows PowerShell provides several ways to define and access variables, as sum-
marized in Table A-2.

List evaluation: @() PS >"Hello".Length
5
PS >@("Hello").Length
1
PS >(Get-ChildItem).Count
12
PS >(Get-ChildItem *.txt).Count
PS >@(Get-ChildItem *.txt).Count
1

Forces an expression to be evaluated as a
list. If it is already a list, it will remain a list.
If it is not, PowerShell temporarily treats it
as one.

Table A-1. Windows PowerShell evaluation controls (continued)

Statement Example Explanation

Variables | 445

Unlike some languages, PowerShell rounds (not truncates) numbers
when it converts them to the [int] data type:

PS >(3/2)

1.5

PS >[int] (3/2)

2

To have PowerShell truncate a number, see Chapter 6, Calculations and Math.

Table A-2. Windows PowerShell variable syntaxes

Syntax Meaning

$simpleVariable = "Value" A simple variable name. The variable name must con-
sist of alphanumeric characters. Variable names are
not case sensitive.

${arbitrary!@#@#`{var`}iable} = "Value" An arbitrary variable name. The variable name must
be surrounded by curly braces, but may contain any
characters. Curly braces in the variable name must be
escaped with a backtick (`).

${c:\filename.extension} Variable "Get and Set Content" syntax. This is similar to
the arbitrary variable name syntax. If the name corre-
sponds to a valid PowerShell path, you can get and set
the content of the item at that location by reading and
writing to the variable.

[datatype] $variable = "Value" Strongly typed variable. Ensures that the variable may
contain only data of the type you declare. PowerShell
throws an error if it cannot coerce the data to this type
when you assign it.

$SCOPE:variable Gets or sets the variable at that specific scope. Valid
scope names are global (to make a variable avail-
able to the entire shell), script (to make a variable
available only to the current script), local (to make a
variable available only to the current scope and sub-
scopes), and private (to make a variable available
only to the current scope). The default scope is the
current scope: global when defined interactively in
the shell,scriptwhen defined outside any functions
or script blocks in a script, and local elsewhere.

New-Item Variable:\variable –Value value Creates a new variable using the Variable Provider.

Get-Item Variable:\variable
Get-Variable variable

Gets the variable using the Variable Provider or Get-
Variable cmdlet. This lets you access extra informa-
tion about the variable, such as its options and
description.

New-Variable variable –Option option –Value
value

Creates a variable using the New-Variable cmdlet.
This lets you provide extra information about the vari-
able, such as its options and description.

446 | Appendix A: PowerShell Language and Environment

Booleans
Boolean (true or false) variables are most commonly initialized to their literal values
of $true and $false. When it evaluates variables as part of a Boolean expression (for
example, an if statement), though, PowerShell maps them to a suitable Boolean rep-
resentation, as listed in Table A-3.

Strings
Windows PowerShell offers several facilities for working with plain-text data.

Literal and Expanding Strings
To define a literal string (one in which no variable or escape expansion occurs),
enclose it in single quotes:

$myString = 'hello `t $ENV:SystemRoot'

$myString gets the actual value of hello `t $ENV:SystemRoot.

To define an expanding string (one in which variable and escape expansion occurs),
enclose it in double quotes:

$myString = "hello `t $ENV:SystemRoot"

$myString gets a value similar to hello C:\WINDOWS.

To include a single quote in a single-quoted string, or a double quote in a double-
quoted string, you may include two of the quote characters in a row:

PS >"Hello ""There""!"
Hello "There"!
PS >'Hello ''There''!'
Hello 'There'!

Table A-3. Windows PowerShell Boolean interpretations

Result Boolean representation

$true True

$false False

$null False

Nonzero number True

Zero False

Nonempty string True

Empty string False

Nonempty array True

Empty array False

Hashtable (either empty or not) True

Strings | 447

To include a complex expression inside an expanding string, use a
subexpression. For example:

$prompt = "$(get-location) >"

$prompt gets a value similar to c:\temp >.

Accessing the properties of an object requires a subexpression:

$output =

 "Current script name is: $($myInvocation.MyCommand.Path)"

$output gets a value similar to Current script name is c:\Test-
Script.ps1.

Here Strings
To define a here string (one that may span multiple lines), place the two characters @"
at the beginning, and the two characters "@ on their own line at the end.

For example:

$myHereString = @"
This text may span multiple lines, and may
contain "quotes".
"@

Here strings may be of either the literal (single quoted) or expanding (double quoted)
variety.

Escape Sequences
Windows PowerShell supports escape sequences inside strings, as listed in
Table A-4.

Table A-4. Windows PowerShell escape sequences

Sequence Meaning

`0 The null character. Often used as a record separator.

`a The alarm character. Generates a beep when displayed on the console.

`b The backspace character. The previous character remains in the string but is overwritten
when displayed on the console.

`f A form feed. Creates a page break when printed on most printers.

`n A newline.

`r A carriage return. Newlines in PowerShell are indicated entirely by the `n character, so this
is rarely required.

`t A tab.

`v A vertical tab.

'' (Two single quotes) A single quote, when in a literal string.

"" (Two double quotes) A double quote, when in an expanding string.

`<any other character> That character, taken literally.

448 | Appendix A: PowerShell Language and Environment

Numbers
PowerShell offers several options for interacting with numbers and numeric data.

Simple Assignment
To define a variable that holds numeric data, simply assign it as you would other
variables. PowerShell automatically stores your data in a format that is sufficient to
accurately hold it.

$myInt = 10

$myInt gets the value of 10, as a (32-bit) integer.

$myDouble = 3.14

$myDouble gets the value of 3.14, as a (53-bit, 9 bits of precision) double.

To explicitly assign a number as a long (64-bit) integer or decimal (96-bit, 96 bits of
precision), use the long and decimal suffixes:

$myLong = 2147483648L

$myLong gets the value of 2147483648, as a long integer.

$myDecimal = 0.999D

$myDecimal gets the value of 0.999.

PowerShell also supports scientific notation:

$myPi = 3141592653e-9

$myPi gets the value of 3.141592653.

The data types in PowerShell (integer, long integer, double, and decimal) are built on
the .NET data types of the same name.

Administrative Numeric Constants
Since computer administrators rarely get the chance to work with numbers in even
powers of ten, PowerShell offers the numeric constants of gb, mb, and kb to represent
gigabytes, megabytes, and kilobytes, respectively:

PS >$downloadTime = (1gb + 250mb) / 120kb
PS >$downloadTime
10871.4666666667

Hexadecimal and Other Number Bases
To directly enter a hexadecimal number, use the hexadecimal prefix 0x:

$myErrorCode = 0xFE4A

$myErrorCode gets the integer value 65098.

Arrays and Lists | 449

The PowerShell scripting language does not natively support other number bases,
but its support for interaction with the .NET Framework enables conversion to and
from binary, octal, decimal, and hexadecimal:

$myBinary = [Convert]::ToInt32("101101010101", 2)

$myBinary gets the integer value of 2901.

$myOctal = [Convert]::ToInt32("1234567", 8)

$myOctal gets the integer value of 342391.

$myHexString = [Convert]::ToString(65098, 16)

$myHexString gets the string value of fe4a.

$myBinaryString = [Convert]::ToString(12345, 2)

$myBinaryString gets the string value of 11000000111001.

See the “Working with the .NET Framework” section later in this
chapter to learn more about using PowerShell to interact with the .
NET Framework.

Arrays and Lists

Array Definitions
PowerShell arrays hold lists of data. The @() (array cast) syntax tells PowerShell to
treat the contents between the parentheses as an array. To create an empty array,
type:

$myArray = @()

To define a nonempty array, use a comma to separate its elements:

$mySimpleArray = 1,"Two",3.14

Arrays may optionally be only a single element long:

$myList = ,"Hello"

Or, alternatively (using the array cast syntax),

$myList = @("Hello")

Elements of an array do not need to be all of the same data type, unless you declare it
as a strongly typed array. In the following example, the outer square brackets define
a strongly typed variable (as mentioned in the “Variables” section earlier in this
chapter), and int[] represents an array of integers:

[int[]] $myArray = 1,2,3.14

450 | Appendix A: PowerShell Language and Environment

In this mode, PowerShell throws an error if it cannot convert any of the elements in
your list to the required data type. In this case, it rounds 3.14 to the integer value of 3.

PS >$myArray[2]
3

To ensure that PowerShell treats collections of uncertain length (such
as history lists or directory listings) as a list, use the list evaluation syn-
tax @(…) described in the “Commands and Expressions” section ear-
lier in this chapter.

Arrays can also be multidimensional “jagged” arrays —arrays within arrays:

$multiDimensional = @(
 (1,2,3,4),
 (5,6,7,8)
)

$multiDimensional[0][1] returns 2, coming from row 0, column 1.

$multiDimensional[1][3] returns 8, coming from row 1, column 3.

To define a multidimensional array that is not jagged, create a multidimensional
instance of the .NET type. For integers, that would be an array of System.Int32:

$multidimensional = New-Object "Int32[,]" 2,4
$multidimensional[0,1] = 2
$multidimensional[1,3] = 8

Array Access
To access a specific element in an array, use the [] operator. PowerShell numbers
your array elements starting at zero. Using $myArray = 1,2,3,4,5,6 as an example:

$myArray[0]

Returns 1, the first element in the array.

$myArray[2]

Returns 3, the third element in the array.

$myArray[-1]

Returns 6, the last element of the array.

$myArray[-2]

Returns 5, the second-to-last element of the array.

You can also access ranges of elements in your array:

PS >$myArray[0..2]
1
2
3

Hashtables (Associative Arrays) | 451

Returns elements 0 through 2, inclusive.

PS >$myArray[-1..2]
6
1
2
3

Returns the final element, wraps around, and returns elements 0 through 2, inclu-
sive. PowerShell wraps around because the one number in the range is positive, and
the second number in the range is negative.

PS >$myArray[-1..-3]
6
5
4

Returns the last element of the array through to the third-to-last element in array, in
decreasing order. PowerShell does not wrap around (and therefore scans backward
in this case) because both numbers in the range share the same sign.

Array Slicing
You can combine several of the above statements at once to extract more complex
ranges from an array. Use the + sign to separate array ranges from explicit indexes:

$myArray[0,2,4]

Returns the elements at indices 0, 2, and 4.

$myArray[0,2+4..5]

Returns the elements at indices 0, 2, and 4 through 5, inclusive.

$myArray[,0+2..3+0,0]

Returns the elements at indices 0, 2 through 3 inclusive, 0, and 0 again.

You can use the array slicing syntax to create arrays, as well:

$myArray = ,0+2..3+0,0

Hashtables (Associative Arrays)

Hashtable Definitions
PowerShell hashtables (also called associative arrays) let you associate keys with val-
ues. To define a hashtable, use the syntax:

$myHashtable = @{}

452 | Appendix A: PowerShell Language and Environment

You can initialize a hashtable with its key/value pairs when you create it. PowerShell
assumes that the keys are strings, but the values may be any data type.

$myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3; 3.14 = "Pi" }

Hashtable Access
To access or modify a specific element in an associative array, you may use either the
array-access or property-access syntax:

$myHashtable["Key1"]

Returns "Value1".

$myHashtable."Key 2"

Returns the array 1,2,3.

$myHashtable["New Item"] = 5

Adds "New Item" to the hashtable.

$myHashtable."New Item" = 5

Also adds "New Item" to the hashtable.

XML
PowerShell supports XML as a native data type. To create an XML variable, cast a
string to the [xml] type:

$myXml = [xml] @"
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
"@

PowerShell exposes all child nodes and attributes as properties. When it does this,
PowerShell automatically groups children that share the same node type:

$myXml.AddressBook

Returns an object that contains a Person property.

$myXml.AddressBook.Person

Simple Operators | 453

Returns a list of Person nodes. Each person node exposes contactType, Name, and
Phone as properties.

$myXml.AddressBook.Person[0]

Returns the first Person node.

$myXml.AddressBook.Person[0].ContactType

Returns Personal as the contact type of the first Person node.

The XML data type wraps the .NET XmlDocument and XmlElement
classes. Unlike most PowerShell .NET wrappers, this wrapper does not
expose the properties from the underlying class, because they may con-
flict with the dynamic properties that PowerShell adds for node names.

To access properties of the underlying class, use the PsBase property.
For example:

$myXml.PsBase.InnerXml

See “Working with the .NET Framework” later in the chapter for
more about using PowerShell to interact with the .NET Framework.

Simple Operators
Once you have defined your data, the next step is to work with it.

Arithmetic Operators
The arithmetic operators let you perform mathematical operations on your data, as
shown in Table A-5.

The System.Math class in the .NET Framework offers many powerful
operations in addition to the native operators supported by Power-
Shell:

PS >[Math]::Pow([Math]::E, [Math]::Pi)

23.1406926327793

See “Working with the .NET Framework” later in thie chapter to learn
more about using PowerShell to interact with the .NET Framework.

454 | Appendix A: PowerShell Language and Environment

Table A-5. Windows PowerShell arithmetic operators

Operator Meaning

+ The addition operator:

$leftValue + $rightValue

When used with numbers, returns their sum.

When used with strings, returns a new string created by appending the second string to the first.

When used with arrays, returns a new array created by appending the second array to the first.

When used with hashtables, returns a new hashtable created by merging the two hashtables. Since hashtable
keys must be unique, PowerShell returns an error if the second hashtable includes any keys already defined in
the first hashtable.

When used with any other type, PowerShell uses that type’s addition operator (op_Addition) if it imple-
ments one.

- The subtraction operator:

$leftValue - $rightValue

When used with numbers, returns their difference.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s subtraction operator (op_Subtraction) if it
implements one.

* The multiplication operator:

$leftValue * $rightValue

When used with numbers, returns their product.

When used with strings ("=" * 80), returns a new string created by appending the string to itself the num-
ber of times you specify.

When used with arrays (1..3 * 7), returns a new array created by appending the array to itself the number
of times you specify.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s multiplication operator (op_Multiply) if it
implements one.

/ The division operator:

$leftValue / $rightValue

When used with numbers, returns their quotient.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s multiplication operator (op_Division) if it
implements one.

Simple Operators | 455

Logical Operators
The logical operators let you compare Boolean values, as shown in Table A-6.

% The modulus operator:

$leftValue % $rightValue

When used with numbers, returns the remainder of their division.

This operator does not apply to strings.

This operator does not apply to arrays.

This operator does not apply to hashtables.

When used with any other type, PowerShell uses that type’s multiplication operator (op_Modulus) if it
implements one.

+=
-=
*=
/=
%=

Assignment operators:

$variable operator= value

These operators match the simple arithmetic operators (+, -, *, /, and %) but store the result in the variable
on the left-hand side of the operator. It is a short-form for

$variable = $variable operator value.

Table A-6. Windows PowerShell logical operators

Operator Meaning

-and Logical AND:

$leftValue -and $rightValue

Returns $true if both left-hand and right-hand arguments evaluate to $true. Returns $false otherwise.

You can combine several –and operators in the same expression:

$value1 –and $value2 –and $value3 …

PowerShell implements the –and operator as a short-circuit operator, and evaluates arguments only if all
arguments preceding it evaluate to $true.

-or Logical OR:

$leftValue -or $rightValue

Returns $true if the left-hand or right-hand arguments evaluate to $true. Returns $false otherwise.

You can combine several –or operators in the same expression:

$value1 –or $value2 –or $value3 …

PowerShell implements the –or operator as a short-circuit operator—and evaluates arguments only if all
arguments preceding it evaluate to $false.

-xor Logical Exclusive OR:

$leftValue -xor $rightValue

Returns $true if either the left-hand or right-hand argument evaluates to $true, but not if both do.
Returns $false otherwise.

-not
!

Logical NOT:

-not $value

Returns $true if its (only) right-hand argument evaluates to $false. Returns $false otherwise.

Table A-5. Windows PowerShell arithmetic operators (continued)

Operator Meaning

456 | Appendix A: PowerShell Language and Environment

Binary Operators
The binary operators, listed in Table A-7, let you apply the Boolean logical operators
bit by bit to the operator’s arguments. When comparing bits, a 1 represents $true,
while a 0 represents $false.

Table A-7. Windows PowerShell binary operators

Operator Meaning

-band Binary AND:

$leftValue -band $rightValue

Returns a number where bits are set to 1 if the bits of the left-hand and right-hand arguments at that posi-
tion are both 1. All other bits are set to 0.

For example:

PS >$boolean1 = "110110110"
PS >$boolean2 = "010010010"
PS >$int1 = [Convert]::ToInt32($boolean1, 2)
PS >$int2 = [Convert]::ToInt32($boolean2, 2)
PS >$result = $int1 -band $int2
PS >[Convert]::ToString($result, 2)

10010010

-bor Binary OR:

$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the left-hand and right-hand arguments at
that position is 1. All other bits are set to 0.

For example:

PS >$boolean1 = "110110110"
PS >$boolean2 = "010010010"
PS >$int1 = [Convert]::ToInt32($boolean1, 2)
PS >$int2 = [Convert]::ToInt32($boolean2, 2)
PS >$result = $int1 -bor $int2
PS >[Convert]::ToString($result, 2)

110110110

-bxor Binary Exclusive OR:

$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the left-hand and right-hand arguments at
that position is 1, but not if both are. All other bits are set to 0.

For example:

PS >$boolean1 = "110110110"
PS >$boolean2 = "010010010"
PS >$int1 = [Convert]::ToInt32($boolean1, 2)
PS >$int2 = [Convert]::ToInt32($boolean2, 2)
PS >$result = $int1 -bor $int2
PS >[Convert]::ToString($result, 2)

100100100

Simple Operators | 457

Other Operators
PowerShell supports several other simple operators, as listed in Table A-8.

-bnot Binary NOT:

-bnot $value

Returns a number where bits are set to 1 if the bit of the right-hand (and only) argument at that position is
set to 1. All other bits are set to 0.

For example:

PS >$boolean1 = "110110110"
PS >$int1 = [Convert]::ToInt32($boolean1, 2)
PS >$result = -bnot $int1
PS >[Convert]::ToString($result, 2)

11111111111111111111111001001001

Table A-8. Other Windows PowerShell operators

Operator Meaning

-replace The replaceoperator:

"target" –replace "pattern","replacement"

Returns a new string, where the text in "target" that matches the regular expression "pattern" has
been replaced with the replacement text, "replacement".

By default, PowerShell performs a case-insensitive comparison. The–ireplace operator makes this case
insensitivity explicit, while the –creplace operator performs a case-sensitive comparison.

If the regular expression pattern contains named captures or capture groups, the replacement string may
reference those as well.

For example:

PS >"Hello World" -replace "(.*) (.*)",'$2 $1'
World Hello

If "target" represents an array, the –replace operator operates on each element of that array.

For more information on the details of regular expressions, see also Appendix B.

-f The format operator:

"Format String" -f Values

Returns a string, where the format items in the format string have been replaced with the text equivalent
of the values in the value array.

For example:

PS >"{0:n0}" -f 1000000000
1,000,000,000

The format string for the format operator is exactly the format string supported by the .NET String.
Format method.

For more details about the syntax of the format string, see also Appendix H.

Table A-7. Windows PowerShell binary operators (continued)

Operator Meaning

458 | Appendix A: PowerShell Language and Environment

Comparison Operators
The PowerShell comparison operators, listed in Table A-9, let you compare expres-
sions against each other. By default, PowerShell’s comparison operators are case
insensitive. For all operators where case sensitivity applies, the –i prefix makes this
case insensitivity explicit, while the –c prefix performs a case-sensitive comparison.

-as The type conversion operator:

$value –as [Type]

Returns $value cast to the given .NET type. If this conversion is not possible, PowerShell returns $null.

For example:

PS >3/2 -as [int]
2
PS >$result = "Hello" -as [int]
PS >$result -eq $null
True

Table A-9. Windows PowerShell comparison operators

Operator Meaning

-eq The equality operator:

$leftValue –eq $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are equal.

When used with arrays, returns all elements in $leftValue that are equal to $rightValue.

When used with any other type, PowerShell uses that type’s Equals() method if it implements one.

-ne The negated equality operator:

$leftValue –ne $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are not equal.

When used with arrays, returns all elements in $leftValue that are not equal to $rightValue.

When used with any other type, PowerShell returns the negation of that type’s Equals() method if it
implements one.

-ge The greater-than-or-equal operator:

$leftValue –ge $rightValue

For all primitive types, returns $true if $leftValue is greater than or equal to $rightValue.

When used with arrays, returns all elements in $leftValue that are greater than or equal to
$rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number greater than or equal to zero, the operator returns
$true.

Table A-8. Other Windows PowerShell operators (continued)

Operator Meaning

Comparison Operators | 459

-gt The greater-than operator:

$leftValue –gt $rightValue

For all primitive types, returns $true if $leftValue is greater than $rightValue.

When used with arrays, returns all elements in $leftValue that are greater than $rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number greater than zero, the operator returns $true.

-lt The less-than operator:

$leftValue –lt $rightValue

For all primitive types, returns $true if $leftValue is less than $rightValue.

When used with arrays, returns all elements in $leftValue that are less than $rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number less than zero, the operator returns $true.

-le The less-than-or-equal operator:

$leftValue –le $rightValue

For all primitive types, returns $true if $leftValue is less than or equal to $rightValue.

When used with arrays, returns all elements in $leftValue that are less than or equal to
$rightValue.

When used with any other type, PowerShell returns the result of that object’s Compare() method if it
implements one. If the method returns a number less than or equal to zero, the operator returns $true.

-like The like operator:

$leftValue –like Pattern

Evaluates the pattern against the target, returning $true if the simple match is successful.

When used with arrays, returns all elements in $leftValue that match Pattern.

The -like operator supports the following simple wildcard characters:

? Any single unspecified character

* Zero or more unspecified characters

[a-b] Any character in the range of a-b

[ab] The specified characters a or b

For example:

PS >"Test" -like "[A-Z]e?[tr]"
True

-notlike The negated like operator:

Returns $true when the –like operator would return $false.

Table A-9. Windows PowerShell comparison operators (continued)

Operator Meaning

460 | Appendix A: PowerShell Language and Environment

Conditional Statements
Conditional statements in PowerShell let you change the flow of execution in your
script.

if, elseif, and else Statements

if(condition)
{
 statement block
}
elseif(condition)

-match The match operator:

"Target" –match Regular Expression

Evaluates the regular expression against the target, returning $true if the match is successful. Once com-
plete, PowerShell places the successful matches in the $matches variable.

When used with arrays, returns all elements in Target that match Regular Expression.

The $matches variable is a hashtable that maps the individual matches to the text they match. 0 is the
entire text of the match, 1 and on contain the text from any unnamed captures in the regular expression,
and string values contain the text from any named captures in the regular expression.

For example:

PS >"Hello World" -match "(.*) (.*)"
True
PS >$matches[1]
Hello

For more information on the details of regular expressions, see also Appendix B.

-notmatch The negated match operator:

Returns $true when the –match operator would return $false.

The –notmatch operator still populates the $matches variable with the results of match.

-contains The contains operator:

$list –contains $value

Returns $true if the list specified by $list contains the value $value. That is, if $item –eq $value
returns $true for at least one item in the list.

-not-
contains

The negated contains operator:

Returns $true when the –contains operator would return $false.

-is The type operator:

$leftValue –is [type]

Returns $true if $value is (or extends) the specified .NET type.

-isnot The negated type operator:

Returns $true when the -is operator would return $false.

Table A-9. Windows PowerShell comparison operators (continued)

Operator Meaning

Conditional Statements | 461

{
 statement block
}
else
{
 statement block
}

If condition evaluates to $true, then PowerShell executes the statement block you
provide. Then, it resumes execution at the end of the if / elseif / else statement
list. PowerShell requires the enclosing braces around the statement block even if the
statement block contains only one statement.

See “Simple Operators” and “Comparison Operators,” earlier in this
chapter for a discussion on how PowerShell evaluates expressions as
conditions.

If condition evaluates to $false, then PowerShell evaluates any following (optional)
elseif conditions until one matches. If one matches, PowerShell executes the state-
ment block associated with that condition, then resumes execution at the end of the
if / elseif / else statement list.

For example:

$textToMatch = Read-Host "Enter some text"
$matchType = Read-Host "Apply Simple or Regex matching?"
$pattern = Read-Host "Match pattern"
if($matchType -eq "Simple")
{
 $textToMatch -like $pattern
}
elseif($matchType -eq "Regex")
{
 $textToMatch -match $pattern
}
else
{
 Write-Host "Match type must be Simple or Regex"
}

If none of the conditions evaluate to $true, PowerShell executes the statement block
associated with the (optional) else clause, and then resumes execution at the end of
the if / elseif / else statement list.

switch Statements
switch options expression
{

comparison value { statement block }
 -or-

462 | Appendix A: PowerShell Language and Environment

 { comparison expression } { statement block }

 (…)
 default { statement block }
}

or:

switch options –file filename
{

comparison value { statement block }
 -or-
 { comparison expression } { statement block }

 (…)
 default { statement block }
}

When PowerShell evaluates a switch statement, it evaluates expression against the
statements in the switch body. If expression is a list of values, PowerShell evaluates
each item against the statements in the switch body. If you specify the –file option,
PowerShell treats the lines in the file as though they were a list of items in
expression.

The comparison value statements let you match the current input item against the
pattern specified by comparison value. By default, PowerShell treats this as a case-
insensitive exact match, but the options you provide to the switch statement can
change this, as shown in Table A-10.

Table A-10. Options supported by PowerShell switch statements

Option Meaning

-casesensitive
-c

Case-sensitive match.

With this option active, PowerShell executes the associated statement block only if the current input
item exactly matches the value specified by comparison value. If the current input object is a
string, the match is case-sensitive.

-exact
-e

Exact match.

With this option active, PowerShell executes the associated statement block only if the current input
item exactly matches the value specified by comparison value. This match is case-insensitive.
This is the default mode of operation.

-regex
-r

Regular-expression match.

With this option active, PowerShell executes the associated statement block only if the current input item
matches the regular expression specified by comparison value. This match is case-insensitive.

Conditional Statements | 463

The { comparison expression } statements let you process the current input item,
which is stored in the $_ variable, in an arbitrary script block. When it processes a
{ comparison expression } statement, PowerShell executes the associated statement
block only if { comparison expression } evaluates to $true.

PowerShell executes the statement block associated with the (optional) default state-
ment if no other statements in the switch body match.

When processing a switch statement, PowerShell tries to match the current input
object against each statement in the switch body, falling through to the next state-
ment even after one or more have already matched. To have PowerShell exit a switch
statement after it processes a match, include a break statement as the last statement
in the statement block.

For example:

$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)
{
 { $_.Length -le 8 } { "Area code was not specified"; break }
 { $_.Length -gt 8 } { "Area code was specified" }
 "\((555)\).*" { "In the $($matches[1]) area code" }
}

Produces the output:

Area code was specified
In the 555 area code
Area code was not specified

See the following section, “Looping Statements,” for more informa-
tion about the break statement.

By default, PowerShell treats this as a case-insensitive exact match, but the options
you provide to the switch statement can change this.

-wildcard
-w

Wildcard match.

With this option active, PowerShell executes the associated statement block only if the current input
item matches the wildcard specified by comparison value.

The wildcard match supports the following simple wildcard characters:

? Any single unspecified character

* Zero or more unspecified characters

[a-b] Any character in the range of a-b

[ab] The specified characters a or b

This match is case-insensitive.

Table A-10. Options supported by PowerShell switch statements (continued)

Option Meaning

464 | Appendix A: PowerShell Language and Environment

Looping Statements
Looping statements in PowerShell let you execute groups of statements multiple
times.

for Statement
:loop_label for(initialization; condition; increment)
{
 statement block
}

When PowerShell executes a for statement, it first executes the expression given by
initialization. It next evaluates condition. If condition evaluates to $true, Power-
Shell executes the given statement block. It then executes the expression given by
increment. PowerShell continues to execute the statement block and increment state-
ment as long as condition evaluates to $true.

For example:

for($counter = 0; $counter -lt 10; $counter++)
{
 Write-Host "Processing item $counter"
}

The break and continue statements (discussed later in the chapter) can specify the
loop_label of any enclosing looping statement as their target.

foreach Statement
:loop_label foreach(variable in expression)
{
 statement block
}

When PowerShell executes a foreach statement, it executes the pipeline given by
expression—for example, Get-Process | Where-Object { $_.Handles -gt 500 } or 1..10.
For each item produced by the expression, it assigns that item to the variable specified
by variable and then executes the given statement block. For example:

$handleSum = 0;
foreach($process in Get-Process |
 Where-Object { $_.Handles -gt 500 })
{
 $handleSum += $process.Handles
}
$handleSum

The break and continue statements (discussed later in the chapter) can specify the
loop_label of any enclosing looping statement as their target.

Looping Statements | 465

while Statement
:loop_label while(condition)
{
 statement block
}

When PowerShell executes a while statement, it first evaluates the expression given
by condition. If this expression evaluates to $true, PowerShell executes the given
statement block. PowerShell continues to execute the statement block as long as
condition evaluates to $true. For example:

$command = "";
while($command -notmatch "quit")
{
 $command = Read-Host "Enter your command"
}

The break and continue statements (discussed later in the chapter) can specify the
loop_label of any enclosing looping statement as their target.

do … while Statement/do … until Statement
:loop_label do
{
 statement block
} while(condition)

or

:loop_label do
{
 statement block
} until(condition)

When PowerShell executes a do...while or do...until statement, it first executes the
given statement block. In a do...while statement, PowerShell continues to execute
the statement block as long as condition evaluates to $true. In a do...until state-
ment, PowerShell continues to execute the statement as long as condition evaluates
to $false. For example:

$validResponses = "Yes","No"
$response = ""
do
{
 $response = read-host "Yes or No?"
} while($validResponses -notcontains $response)
"Got it."

$response = ""
do

466 | Appendix A: PowerShell Language and Environment

{
 $response = read-host "Yes or No?"
} until($validResponses -contains $response)
"Got it."

The break and continue statements (discussed later in the chapter) can specify the
loop_label of any enclosing looping statement as their target.

Flow Control Statements
PowerShell supports two statements to help you control flow within loops: break and
continue.

break

The break statement halts execution of the current loop. PowerShell then resumes
execution at the end of the current looping statement, as though the looping state-
ment had completed naturally. If you specify a label with the break statement—for
example, break :outer_loop—PowerShell halts the execution of that loop instead.

For example:

:outer for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break :outer
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

Produces the output:

Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

continue

The continue statement skips execution of the rest of the current statement block.
PowerShell then continues with the next iteration of the current looping statement,

Working with the .NET Framework | 467

as though the statement block had completed naturally. If you specify a label with
the continue statement—for example, continue :outer—PowerShell continues with
the next iteration of that loop instead.

For example:

:outer for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue :outer
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

Produces the output:

Processing item 0,0
Processing item 0,1
Processing item 0,3
Processing item 0,4
Processing item 1,0
Processing item 1,1
Processing item 1,3
Processing item 1,4
Processing item 2,0
Processing item 2,1
Processing item 2,3
Processing item 2,4
Processing item 3,0
Processing item 3,1
Processing item 3,3
Processing item 3,4
Processing item 4,0
Processing item 4,1
Processing item 4,3
Processing item 4,4

Working with the .NET Framework
One feature that gives PowerShell its incredible reach into both system administra-
tion and application development is its capability to leverage Microsoft’s enormous
and broad .NET Framework.

Work with the .NET Framework in PowerShell comes mainly by way of one of two
tasks: calling methods or accessing properties.

468 | Appendix A: PowerShell Language and Environment

Static Methods
To call a static method on a class, type:

[ClassName]::MethodName(parameter list)

For example:

PS >[System.Diagnostics.Process]::GetProcessById(0)

gets the process with the ID of 0 and displays the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance Methods
To call a method on an instance of an object, type:

$objectReference.MethodName(parameter list)

For example:

PS >$process = [System.Diagnostics.Process]::GetProcessById(0)
PS >$process.Refresh()

This stores the process with ID of 0 into the $process variable. It then calls the
Refresh() instance method on that specific process.

Static Properties
To access a static property on a class, type:

[ClassName]::PropertyName

or:

[ClassName]::PropertyName = value

For example, the [System.DateTime] class provides a Now static property that returns
the current time:

PS >[System.DateTime]::Now
Sunday, July 16, 2006 2:07:20 PM

Although rare, some types let you set the value of some static properties.

Instance Properties
To access an instance property on an object, type:

$objectReference.PropertyName

or:

$objectReference.PropertyName = value

Working with the .NET Framework | 469

For example:

PS >$today = [System.DateTime]::Now
PS >$today.DayOfWeek
Sunday

This stores the current date in the $today variable. It then calls the DayOfWeek instance
property on that specific date.

Learning About Types
The two primary avenues for learning about classes and types are the Get-Member
cmdlet and the documentation for the .NET Framework.

The Get-Member Cmdlet

To learn what methods and properties a given type supports, pass it through the Get-
Member cmdlet, as shown in Table A-11.

.NET framework documentation

Another source of information about the classes in the .NET Framework is the docu-
mentation itself, available through the search facilities at http://msdn.microsoft.com.

Typical documentation for a class first starts with a general overview, then provides a
hyperlink to the members of the class—the list of methods and properties it supports.

To get to the documentation for the members quickly, search for them
more explicitly by adding the term “members” to your MSDN search
term:

classname members

Table A-11. Working with the Get-Member cmdlet

Action Result

[typename] | Get-Member –Static All the static methods and properties of a given type

$objectReference | Get-Member –Static All the static methods and properties provided by the type in
$objectReference

$objectReference | Get-Member All the instance methods and properties provided by the type in
$objectReference. If $objectReference represents a
collection of items, PowerShell returns the instances and proper-
ties of the types contained by that collection. To view the
instances and properties of a collection itself, use the –InputOb-
ject parameter of Get-Member:

Get-Member –InputObject $objectReference

[typename] | Get-Member All the instance methods and properties of a System.Runtime-
Type object that represents this type

470 | Appendix A: PowerShell Language and Environment

The documentation for the members of a class lists their constructors, methods,
properties, and more. It uses an S icon to represent the static methods and proper-
ties. Click the member name for more information about that member—including
the type of object that the member produces.

Type Shortcuts
When you specify a type name, PowerShell lets you use a short form for some of the
most common types, as listed in Table A-12.

Creating Instances of Types
$objectReference = New-Object TypeName parameters

Although static methods and properties of a class generate objects, you will often
want to create them explicitly yourself. PowerShell’s New-Object cmdlet lets you cre-
ate an instance of the type you specify. The parameter list must match the list of
parameters accepted by one of the type’s constructors, as documented on MSDN.

For example:

$webClient = New-Object Net.WebClient
$webClient.DownloadString("http://search.msn.com")

Most common types are available by default. However, many are available only after
you load the library (called the assembly) that defines them. The MSDN documenta-
tion for a class includes the assembly that defines it.

To load an assembly, use the methods provided by the System.Reflection.Assembly
class:

PS >[Reflection.Assembly]::LoadWithPartialName("System.Web")

Table A-12. PowerShell type shortcuts

Type shortcut Full classname

[Adsi] [System.DirectoryServices.DirectoryEntry]

[Hashtable] [System.Collections.Hashtable]

[PSObject] [System.Management.Automation.PSObject]

[Ref] [System.Management.Automation.PSReference]

[Regex] [System.Text.RegularExpressions.Regex]

[ScriptBlock] [System.Management.Automation.ScriptBlock]

[Switch] [System.Management.Automation.SwitchParameter]

[Wmi] [System.Management.ManagementObject]

[WmiClass] [System.Management.ManagementClass]

[WmiSearcher] [System.Management.ManagementObjectSearcher]

[Xml] [System.Xml.XmlDocument]

[TypeName] [System.TypeName]

Working with the .NET Framework | 471

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_32\(…)\System.Web.dll

PS >[Web.HttpUtility]::UrlEncode("http://search.msn.com")
http%3a%2f%2fsearch.msn.com

The LoadWithPartialName method is unsuitable for scripts that you
want to share with others, or use in a production environment. It
loads the most current version of the assembly, which may not be the
same as the version you used to develop your script. To load an assem-
bly in the safest way possible, use its fully qualified name with the
[Reflection.Assembly]::Load() method.

Interacting with COM Objects
PowerShell lets you access methods and properties on COM objects the same way
you would interact with objects from the .NET Framework. To interact with a COM
object, use its ProgId with the –ComObject parameter (often shortened to –Com) on
New-Object:

PS >$shell = New-Object -Com Shell.Application
PS >$shell.Windows() | Select-Object LocationName,LocationUrl

For more information about the COM objects most useful to system administrators,
see also Appendix G, Selected COM Objects and Their Uses.

Extending Types
PowerShell supports two ways to add your own methods and properties to any type:
the Add-Member cmdlet and a custom types extension file.

The Add-Member cmdlet

The Add-Member cmdlet lets you dynamically add methods, properties, and more to
an object. It supports the extensions shown in Table A-13.

Table A-13. Selected member types supported by the Add-Member cmdlet

Member type Meaning

AliasProperty A property defined to alias another property:

PS >$testObject = [PsObject] "Test"
PS >$testObject | Add-Member "AliasProperty" Count Length
PS >$testObject.Count
4

CodeProperty A property defined by a: System.Reflection.MethodInfo.

This method must be public, static, return results (nonvoid), and take one parameter of type
PsObject.

472 | Appendix A: PowerShell Language and Environment

Custom type extension files

While the Add-Member cmdlet lets you customize individual objects, PowerShell also
supports configuration files that let you customize all objects of a given type. For
example, you might want to add a Reverse() method to all strings or a HelpUrl prop-
erty (based on the MSDN Url Aliases) to all types.

PowerShell adds several type extensions to the file types.ps1xml, in the PowerShell
installation directory. This file is useful as a source of examples, but you should not

NoteProperty A property defined by the initial value you provide:

PS >$testObject = [PsObject] "Test"
PS >$testObject | Add-Member NoteProperty Reversed tseT
PS >$testObject.Reversed
tseT

ScriptProperty A property defined by the script block you provide. In that script block, $this refers to the current
instance:

PS >$testObject = [PsObject] ("Hi" * 100)
PS >$testObject | Add-Member ScriptProperty IsLong {
>> $this.Length -gt 100
>> }
>> $testObject.IsLong
>>
True

PropertySet A property defined as a shortcut to a set of properties. Used in cmdlets such as Select-Object:

PS >$testObject = [PsObject] [DateTime]::Now
PS >$collection = New-Object `
>> Collections.ObjectModel.Collection``1[System.String]
>> $collection.Add("Month")
>> $collection.Add("Year")
>> $testObject | Add-Member PropertySet MonthYear $collection
>> $testObject | select MonthYear
>>

Year Month
 ------ -----

2007 6

CodeMethod A method defined by a: System.Reflection.MethodInfo.

This method must be public, static, and take one parameter of type PsObject.

ScriptMethod A method defined by the script block you provide. In that script block, $this refers to the current
instance, and $args refers to the input parameters:

PS >$testObject = [PsObject] "Hello"
PS >$testObject | Add-Member ScriptMethod IsLong {
>> $this.Length -gt $args[0]
>> }
>> $testObject.IsLong(3)
>> $testObject.IsLong(100)
>>
True
False

Table A-13. Selected member types supported by the Add-Member cmdlet (continued)

Member type Meaning

Writing Scripts, Reusing Functionality | 473

modify it directly. Instead, create a new one and use the Update-TypeData cmdlet to
load your customizations. The following command loads Types.custom.ps1xml from
the same directory as your profile:

$typesFile = Join-Path (Split-Path $profile) "Types.Custom.Ps1Xml"
Update-TypeData –PrependPath $typesFile

For more information about custom type extensions files, see Recipe 3.12, “Add
Custom Methods and Properties to Types.”

Writing Scripts, Reusing Functionality
When you want to start packaging and reusing your commands, the best place to
put them is in scripts and functions. A script is a text file that contains a sequence
of PowerShell commands. A function is also a sequence of PowerShell commands
but is usually used within a script to break it into smaller, more easily understood
segments.

Writing Scripts
To write a script, write your PowerShell commands in a text editor and save the file
with a .ps1 extension.

Running Scripts
There are two ways to execute a script: by invoking it or by dot-sourcing it.

Invoking

Invoking a script runs the commands inside it. Unless explicitly defined with the
GLOBAL scope keyword, variables and functions defined in the script do not persist
once the script exits.

You invoke a script by using the invoke/call operator (&) with the script name as the
parameter:

& "C:\Script Directory\Run-Commands.ps1" Parameters

You can use either a fully qualified path or a path relative to the current location. If
the script is in the current directory, you must explicitly say so:

.\Run-Commands.ps1 Parameters

If the path contains no spaces, you may omit both the quotes and invoke operator.

Dot-sourcing

Dot-sourcing a script runs the commands inside it. Unlike invoking a script, vari-
ables and functions defined in the script do persist after the script exits.

474 | Appendix A: PowerShell Language and Environment

You invoke a script by using the dot operator (.) and providing the script name as
the parameter:

. "C:\Script Directory\Run-Commands.ps1" Parameters

You can use either a fully qualified path, or a path relative to the current location. If
the script is in the current directory, you must explicitly say so:

. .\Run-Commands.ps1 Parameters

If the path contains no spaces, you may omit the quotes.

By default, a security feature in PowerShell called the Execution Policy
prevents scripts from running. When you want to enable scripting in
PowerShell, you must change this setting. To understand the different
execution policies available to you, type Get-Help about_signing. After
selecting an execution policy, use the Set-ExecutionPolicy cmdlet to
configure it:

Set-ExecutionPolicy RemoteSigned

Providing Input to Scripts
PowerShell offers several options for processing input to a script.

Argument array

To access the command-line arguments by position, use the argument array that
PowerShell places in the $args special variable:

$firstArgument = $args[0]
$secondArgument = $args[1]
$argumentCount = $args.Count

Formal parameters

param([TypeName] $variableName = Default, …)

Formal parameters let you benefit from some of the many benefits of PowerShell’s
consistent command-line parsing engine.

PowerShell exposes your parameter names (for example, $variableName) the same
way that it exposes parameters in cmdlets. Users need only to type enough of your
parameter name to disambiguate it from the rest of the parameters. If the user does
not specify the parameter name, PowerShell attempts to assign the input to your
parameters by position.

If you specify a type name for the parameter, PowerShell ensures that the user input
is of that type. If you specify a default value, PowerShell uses that value if the user
does not provide input for that parameter.

Writing Scripts, Reusing Functionality | 475

To make a parameter mandatory, define the default value so that it
throws an error:

param($mandatory = $(throw "This parameter is required."))

Pipeline input

To access the data being passed to your script via the pipeline, use the input enumer-
ator that PowerShell places in the $input special variable:

foreach($element in $input)
{
 "Input was: $element"
}

The $input variable is a .NET enumerator over the pipeline input. Enumerators sup-
port streaming scenarios very efficiently but do not let you access arbitrary elements
as you would with an array. If you want to process their elements again, you must
call the Reset() method on the $input enumerator once you reach the end.

If you need to access the pipeline input in an unstructured way, use the following
command to convert the input enumerator to an array:

$inputArray = @($input)

Cmdlet keywords in scripts

When pipeline input is a core scenario of your script, you may include statement
blocks labeled begin, process, and end:

param(…)

begin
{
 …
}
process
{
 …
}
end
{
 …
}

PowerShell executes the begin statement when it loads your script, the process state-
ment for each item passed down the pipeline, and the end statement after all pipeline
input has been processed. In the process statement block, the $_ variable represents
the current pipeline object.

When you write a script that includes these keywords, all the commands in your
script must be contained within the statement blocks.

476 | Appendix A: PowerShell Language and Environment

$MyInvocation automatic variable

The $MyInvocation automatic variable contains information about the context under
which the script was run, including detailed information about the command
(MyCommand), the script that defines it (ScriptName), and more.

Retrieving Output from Scripts
PowerShell provides three primary ways to retrieve output from a script.

Pipeline output

any command

The return value/output of a script is any data that it generates, but does not cap-
ture. If a script contains the commands:

"Text Output"
5*5

then assigning the output of that script to a variable creates an array with the two
values, Text Output and 25.

Return statement

return value

The statement

return $false

is simply a short form for pipeline output:

$false
return

Exit statement

exit errorlevel

The exit statement returns an error code from the current script or instance of Pow-
erShell. If called in anywhere in a script (inline, in a function, or in a script block,) it
exits the script. If called outside of a script, it exits PowerShell. The exit statement
sets the $LastExitCode automatic variable to errorLevel. In turn, that sets the $?
automatic variable to $false if errorLevel is not zero.

See also Appendix C, PowerShell Automatic Variables for more infor-
mation about automatic variables.

Writing Scripts, Reusing Functionality | 477

Functions
function SCOPE:name(parameters)
{
 statement block
}

or:

filter SCOPE:name(parameters)
{
 statement block
}

Functions let you package blocks of closely related commands into a single unit that
you can access by name.

Valid scope names are global (to create a function available to the entire shell),
script (to create a function available only to the current script), local (to create a
function available only to the current scope and subscopes), and private (to create a
function available only to the current scope). The default scope is the local scope,
which follows the same rules as those of default variable scopes.

The content of a function’s statement block follows the same rules as the content of
a script. Functions support the $args array, formal parameters, the $input enumera-
tor, cmdlet keywords, pipeline output, and equivalent return semantics.

A common mistake is to call a function as you would call a method:

$result = GetMyResults($item1, $item2)

PowerShell treats functions as it treats scripts and other commands, so
this should instead be:

$result = GetMyResults $item1 $item2

The first command passes an array that contains the items $item1 and
$item2 to the GetMyResults function.

A parameter declaration, as an alternative to a param statement, follows the same syn-
tax as the formal parameter list, but does not require the param keyword.

A filter is simply a function where the statements are treated as though they are con-
tained within a process statement block.

478 | Appendix A: PowerShell Language and Environment

Commands in your script can access only functions that have already
been defined. This can often make large scripts difficult to understand
when the beginning of the script is composed entirely of helper func-
tions. Structuring a script in the following manner often makes it more
clear:

function Main

{

 (...)

 HelperFunction

 (...)

}

function HelperFunction

{

 (...)

}

. Main

As with a script, you may either invoke or dot-source a function.

Script Blocks
$objectReference =
{
 statement block
}

PowerShell supports script blocks, which act exactly like unnamed functions and
scripts. Like both scripts and functions, the content of a script block’s statement
block follows the same rules as the content of a function or script. Script blocks sup-
port the $args array, formal parameters, the $input enumerator, cmdlet keywords,
pipeline output, and equivalent return semantics.

As with both scripts and functions, you may either invoke or dot-source a script
block. Since a script block does not have a name, you either invoke it directly (& {
"Hello" }), or invoke the variable (& $objectReference) that contains it.

Managing Errors
PowerShell supports two classes of errors: nonterminating and terminating. It col-
lects both types of errors as a list in the $error automatic variable.

Managing Errors | 479

Nonterminating Errors
Most errors are nonterminating errors, in that they do not halt execution of the cur-
rent cmdlet, script, function, or pipeline. When a command outputs an error (via
PowerShell’s error-output facilities), PowerShell writes that error to a stream called
the error output stream.

You can output a nonterminating error using the Write-Error cmdlet (or the
WriteError() API when writing a cmdlet).

The $ErrorActionPreference automatic variable lets you control how PowerShell
handles nonterminating errors. It supports the following values, as shown in
Table A-14.

Most cmdlets let you configure this explicitly by passing one of the above values to
its ErrorAction parameter.

Terminating Errors
A terminating error halts execution of the current cmdlet, script, function, or pipe-
line. If a command (such as a cmdlet or .NET method call) generates a structured
exception (for example, if you provide a method with parameters outside their valid
range), PowerShell exposes this as a terminating error. PowerShell also generates a
terminating error if it fails to parse an element of your script, function, or pipeline.

You can generate a terminating error in your script using the throw keyword:

throw message

In your own scripts and cmdlets, generate terminating errors only when
the fundamental intent of the operation is impossible to accomplish. For
example, failing to execute a command on a remote server should be
considered a nonterminating error, while failing to connect to the
remote server altogether should be considered a terminating error.

PowerShell lets you intercept terminating errors if you define a trap statement before
PowerShell encounters that error:

Table A-14. ErrorActionPreference automatic variable values

Value Meaning

SilentlyContinue Do not display errors.

Stop Treat nonterminating errors as terminating errors.

Continue Display errors, but continue execution of the current cmdlet, script, function, or pipeline.
This is the default.

Inquire Display a prompt that asks how PowerShell should treat this error.

480 | Appendix A: PowerShell Language and Environment

trap [exception type]
{
 statement block
 [continue or break]
}

If you specify an exception type, the trap statement applies only to terminating errors
of that type.

If specified, the continue keyword tells PowerShell to continue processing the rest of
your script, function, or pipeline after the point at which it encountered the termi-
nating error.

If specified, the break keyword tells PowerShell to halt processing the rest of your
script, function, or pipeline after the point at which it encountered the terminating
error. Break is the default mode, and applies if you specify neither break nor continue
at all.

Formatting Output
Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell converts them to text
to make them suitable for human consumption. PowerShell supports several options
to help you control this formatting process, as listed in Table A-15.

Table A-15. PowerShell formatting commands

Formatting command Result

Format-Table Properties Formats the properties of the input objects as a table, including only the object proper-
ties you specify. If you do not specify a property list, PowerShell picks a default set.

In addition to supplying object properties, you may also provide advanced formatting
statements:

PS > Get-Process | `
 Format-Table -Auto Name,`
 @{Label="HexId";
 Expression={ "{0:x}" -f $_.Id}
 Width=4
 Align="Right"
 }

The advanced formatting statement is a hashtable with the keys Label and
Expression (or any short form of them). The value of the expression key should
be a script block that returns a result for the current object (represented by the $_
variable).

For more information about the Format-Table cmdlet, type Get-Help
Format-Table.

Formatting Output | 481

Custom formatting files

All the formatting defaults in PowerShell (for example, when you do not specify a
formatting command, or when you do not specify formatting properties) are driven
by the *.Format.Ps1Xml files in the installation directory in a manner similar to the
type extension files mentioned in Recipe 3.12, “Add Custom Methods and Proper-
ties to Types.”

To create your own formatting customizations, use these files as a source of exam-
ples, but do not modify them directly. Instead, create a new file and use the Update-
FormatData cmdlet to load your customizations. The Update-FormatData cmdlet
applies your changes to the current instance of PowerShell. If you wish to load them
every time you launch PowerShell, call Update-FormatData in your profile script. The
following command loads Format.custom.ps1xml from the same directory as your
profile:

$formatFile = Join-Path (Split-Path $profile) "Format.Custom.Ps1Xml"
Update-FormatData –PrependPath $typesFile

Format-List Properties Formats the properties of the input objects as a list, including only the object proper-
ties you specify. If you do not specify a property list, PowerShell picks a default set.

The Format-List cmdlet supports the advanced formatting statements as used by
the Format-Table cmdlet.

The Format-List cmdlet is the one you will use most often to get a detailed sum-
mary of an object’s properties.

The command Format-List * returns all properties, but does not include those
that PowerShell hides by default. The command, Format-List * -Force returns
all properties.

For more information about the Format-List cmdlet, type Get-Help Format-
List.

Format-Wide Property Formats the properties of the input objects in an extremely terse summary view. If you
do not specify a property, PowerShell picks a default.

In addition to supplying object properties, you may also provide advanced formatting
statements:

PS >Get-Process | `
 Format-Wide -Auto `
 @{ Expression={ "{0:x}" -f $_.Id} }

The advanced formatting statement is a hashtable with the key Expression (or any
short form of it). The value of the expression key should be a script block that returns a
result for the current object (represented by the $_ variable).

For more information about the Format-Wide cmdlet, type Get-Help Format-
Wide.

Table A-15. PowerShell formatting commands (continued)

Formatting command Result

482 | Appendix A: PowerShell Language and Environment

Capturing Output
There are several ways to capture the output of commands in PowerShell, as listed in
Table A-16.

Tracing and Debugging
The three facilities for tracing and debugging in PowerShell are the Set-PsDebug
cmdlet, the Trace-Command cmdlet, and verbose cmdlet output.

The Set-PsDebug Cmdlet
The Set-PsDebug cmdlet lets you control tracing, stepping, and strict mode in Power-
Shell. Table A-17 lists the parameters of the Set-PsDebug cmdlet.

Table A-16. Capturing output in PowerShell

Command Result

$variable = Command Stores the objects produced by the PowerShell command into
$variable.

$variable = Command | Out-String Stores the visual representation of the PowerShell command into
$variable. This is the PowerShell command after it’s been converted
to human-readable output.

$variable = NativeCommand Stores the (string) output of the native command into $variable.
PowerShell stores this as a list of strings—one for each line of output
from the native command.

Command -OutVariable variable For most commands, stores the objects produced by the PowerShell com-
mand into $variable. The parameter –OutVariable can also be
written -Ov.

Command > File Redirects the visual representation of the PowerShell (or standard output
of a native command) into File, overwriting File if it exists. Errors are
not captured by this redirection.

Command >> File Redirects the visual representation of the PowerShell (or standard output
of a native command) into File, appending to File if it exists. Errors
are not captured by this redirection.

Command 2> File Redirects the errors from the PowerShell or native command into File,
overwriting File if it exists.

Command 2>> File Redirects the errors from the PowerShell or native command into File,
appending to File if it exists.

Command > File 2>&1 Redirects both the error and standard output streams of the PowerShell
or native command into File, overwriting File if it exists.

Command >> File 2>&1 Redirects both the error and standard output streams of the PowerShell
or native command into File, appending to File if it exists.

Tracing and Debugging | 483

The Trace-Command Cmdlet
Trace-Command CommandDiscovery -PsHost { gci c:\ }

The Trace-Command cmdlet exposes diagnostic and support information for Power-
Shell commands. PowerShell groups its diagnostic information into categories called
trace sources.

A full list of trace sources is available through the Get-TraceSource cmdlet.

For more information about the Trace-Command cmdlet, type Get-Help Trace-Command.

Verbose Cmdlet Output
Cmdlet -Verbose

PowerShell commands can generate verbose output using the Write-Verbose cmdlet
(if written as a script), or the WriteVerbose() API (when written as a cmdlet).

The $VerbosePreference automatic variable lets you control how PowerShell handles
verbose output. It supports the values listed in Table A-18.

Most cmdlets let you configure this explicitly by passing one of the values listed in
Table A-18 to its Verbose parameter.

Table A-17. Parameters of the Set-PsDebug cmdlet

Parameter Description

Trace Sets the amount of tracing detail that PowerShell outputs when running commands.

A value of 1 outputs all lines as PowerShell evaluates them. A value of 2 outputs all lines as PowerShell
evaluates them, along with information about variable assignments, function calls, and scripts. A value of
0 disables tracing.

Step Enables and disables per-command stepping. When enabled, PowerShell prompts you before it executes a
command.

Strict Enables and disables strict mode. When enabled, PowerShell throws a terminating error if you attempt to
reference a variable that you have not yet defined.

Off Turns off tracing, stepping, and strict mode.

Table A-18.

Value Meaning

SilentlyContinue Do not display verbose output. This is the default.

Stop Treat verbose output as a terminating error.

Continue Display verbose output and continue execution of the current cmdlet, script, function, or pipeline.

Inquire Display a prompt that asks how PowerShell should treat this verbose output.

484 | Appendix A: PowerShell Language and Environment

Common Customization Points
As useful as it is out of the box, PowerShell offers several avenues for customization
and personalization.

Console Settings
The Windows PowerShell user interface offers several features to make your shell
experience more efficient.

Adjust your window size

In the System menu (right-click the PowerShell icon at the top left of the console
window), select Properties ➝ Layout. The Window Size options let you control the
actual window size (how big the window appears on screen), while the Screen Buffer
Size options let you control the virtual window size (how much content the window
can hold). If the screen buffer size is larger than the actual window size, the console
window changes to include scrollbars. Increase the virtual window height to make
PowerShell store more output from earlier in your session. If you launch PowerShell
from the Start menu, PowerShell launches with some default modifications to the
window size.

Make text selection easier

In the System menu, click Options ➝ QuickEdit Mode. QuickEdit mode lets you use
the mouse to efficiently copy and paste text into or out of your PowerShell console. If
you launch PowerShell from the Start menu, PowerShell launches with QuickEdit
mode enabled.

Use hotkeys to operate the shell more efficiently

The Windows PowerShell console supports many hotkeys that help make operating
the console more efficient, as shown in Table A-19.

Table A-19. Windows PowerShell hotkeys

Hotkey Meaning

Windows key + r, and then type powershell Launch Windows PowerShell.

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

Page Up Display the first command in your command history.

Page Down Display the last command in your command history.

Left arrow Move cursor one character to the left on your command line.

Common Customization Points | 485

Right arrow Move cursor one character to the right on your command line. If at the end
of the line, inserts a character from the text of your last command at that
position.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

Control + left arrow Move the cursor one word to the left on your command line.

Control + right arrow Move the cursor one word to the right on your command line.

Alt + space, e, l Scroll through the screen buffer.

Alt + space, e, f Search for text in the screen buffer.

Alt + space, e, k Select text to be copied from the screen buffer.

Alt + space, e, p Paste clipboard contents into the Windows PowerShell console.

Alt + space, c Close the Windows PowerShell console.

Control + c Cancel the current operation.

Control + break Forcefully close the Windows PowerShell window.

Control + home Deletes characters from the beginning of the current command line up to
(but not including) the current cursor position.

Control + end Deletes characters from (and including) the current cursor position to the
end of the current command line.

F1 Move cursor one character to the right on your command line. If at the end
of the line, inserts a character from the text of your last command at that
position.

F2 Creates a new command line by copying your last command line up to the
character that you type.

F3 Complete the command line with content from your last command line,
from the current cursor position to the end.

F4 Deletes characters from your cursor position up to (but not including) the
character that you type.

F5 Scan backward through your command history.

F7 Interactively select a command from your command history. Use the arrow
keys to scroll through the window that appears. Press the Enter key to exe-
cute the command, or use the right arrow key to place the text on your
command line instead.

F8 Scan backward through your command history, only displaying matches
for commands that match the text you've typed so far on the command
line.

F9 Invoke a specific numbered command from your command history. The
numbers of these commands correspond to the numbers that the com-
mand-history selection window (F7) shows.

Alt + F7 Clear the command history list.

Table A-19. Windows PowerShell hotkeys (continued)

Hotkey Meaning

486 | Appendix A: PowerShell Language and Environment

While useful in their own right, the hotkeys listed in Table A-19
become even more useful when you map them to shorter or more intu-
itive keystrokes using a hotkey program such as the free AutoHotkey
http://www.autohotkey.com.

Profiles
Windows PowerShell automatically runs the four scripts listed in Table A-20 during
startup. Each, if present, lets you customize your execution environment. Power-
Shell runs anything you place in these files as though you had entered it manually at
the command line.

PowerShell makes editing your profile script simple by defining the
automatic variable, $profile.

To create a new profile, type:

New-Item –Type file –Force $profile

To edit this profile, type:

Notepad $profile

For more information on writing scripts, see the “Writing Scripts, Reusing Function-
ality” section earlier in this chapter.

Prompts
To customize your prompt, add a prompt function to your profile. This function
returns a string. For example:

function Prompt
{
 "PS [$env:COMPUTERNAME] >"
}

Table A-20. Windows PowerShell profiles

Profile purpose Profile location

Customization of all PowerShell sessions, including Power-
Shell hosting applications for all users on the system

InstallationDirectory\profile.ps1

Customization of PowerShell.exe sessions for all users on the
system

InstallationDirectory\Microsoft.
PowerShell_profile.ps1

Customization of all PowerShell sessions, including Power-
Shell hosting applications

My Documents\WindowsPowerShell\profile.ps1

Typical customization of PowerShell.exe sessions My Documents\WindowsPowerShell\Microsoft.
PowerShell_profile.ps1

Common Customization Points | 487

For more information about customizing your prompt, see also Recipe 1.3, “Cus-
tomize Your Shell, Profile, and Prompt.”

Tab Completion
You may define a TabExpansion function to customize the way that Windows Power-
Shell completes properties, variables, parameters, and files when you press the Tab
key.

Your TabExpansion function overrides the one that PowerShell defines by default,
though, so you may want to use its definition as a starting point:

Get-Content function:\TabExpansion

As its arguments, this function receives the entire command line as input, as well as
the last word of the command line. If the function returns one or more strings, Power-
Shell cycles through those strings during tab completion. Otherwise, it uses its built-in
logic to tab-complete file names, directory names, cmdlet names, and variable names.

488

Appendix BAPPENDIX B

Regular Expression Reference 2

Regular expressions play an important role in most text parsing and text matching
tasks. They form an important underpinning of the –match operator, the switch state-
ment, the Select-String cmdlet, and more. Tables B-1 through B-9 list commonly
used regular expressions.

Table B-1. Character classes: Patterns that represent sets of characters

Character class Matches

. Any character except for a newline. If the regular expression uses the SingleLine option, it
matches any character.

PS >"T" -match '.'
True

[characters] Any character in the brackets. For example: [aeiou].

PS >"Test" -match '[Tes]'
True

[^characters] Any character not in the brackets. For example: [^aeiou].

PS >"Test" -match '[^Tes]'
False

[start-end] Any character between the characters start and end, inclusive. You may include multi-
ple character ranges between the brackets. For example, [a-eh-j].

PS >"Test" -match '[e-t]'
True

[^start-end] Any character not between any of the character ranges start through end, inclusive. You
may include multiple character ranges between the brackets. For example, [^a-eh-j].

PS >"Test" -match '[^e-t]'
False

\p{character class} Any character in the Unicode group or block range specified by {character class}.

PS >"+" -match '\p{Sm}'
True

\P{character class} Any character not in the Unicode group or block range specified by {character class}.

PS >"+" -match '\P{Sm}'
False

Regular Expression Reference | 489

\w Any word character.

PS >"a" -match '\w'
True

\W Any nonword character.

PS >"!" -match '\W'
True

\s Any whitespace character.

PS >"`t" -match '\s'
True

\S Any nonwhitespace character.

PS >" `t" -match '\S'
False

\d Any decimal digit.

PS >"5" -match '\d'
True

\D Any nondecimal digit.

PS >"!" -match '\D'
True

Table B-2. Quantifiers: Expressions that enforce quantity on the preceding expression

Quantifier Meaning

<none> One match.

PS >"T" -match 'T'
True

* Zero or more matches, matching as much as possible.

PS >"A" -match 'T*'
True
PS >"TTTTT" -match '^T*$'
True

+ One or more matches, matching as much as possible.

PS >"A" -match 'T+'
False
PS >"TTTTT" -match '^T+$'
True

? Zero or one matches, matching as much as possible.

PS >"TTTTT" -match '^T?$'
False

{n} Exactly n matches.

PS >"TTTTT" -match '^T{5}$'
True

{n,} n or more matches, matching as much as possible.

PS >"TTTTT" -match '^T{4,}$'
True

Table B-1. Character classes: Patterns that represent sets of characters (continued)

Character class Matches

490 | Appendix B: Regular Expression Reference

{n,m} Between n and m matches (inclusive), matching as much as possible.

PS >"TTTTT" -match '^T{4,6}$'
True

*? Zero or more matches, matching as little as possible.

PS >"A" -match '^AT*?$'
True

+? One or more matches, matching as little as possible.

PS >"A" -match '^AT+?$'
False

?? Zero or one matches, matching as little as possible.

PS >"A" -match '^AT??$'
True

{n}? Exactly n matches.

PS >"TTTTT" -match '^T{5}?$'
True

{n,}? n or more matches, matching as little as possible.

PS >"TTTTT" -match '^T{4,}?$'
True

{n,m}? Between n and m matches (inclusive), matching as little as possible.

PS >"TTTTT" -match '^T{4,6}?$'
True

Table B-3. Grouping constructs: Expressions that let you group characters, patterns, and other
expressions

Grouping construct Description

(text) Captures the text matched inside the parentheses. These captures are named by number
(starting at one) based on the order of the opening parenthesis.

PS >"Hello" -match '^(.*)llo$'; $matches[1]
True
He

(?<name>) Captures the text matched inside the parentheses. These captures are named by the name
given in name.

PS >"Hello" -match '^(?<One>.*)llo$'; $matches.One
True
He

(?<name1-name2>) A balancing group definition. This is an advanced regular expression construct, but lets you
match evenly balanced pairs of terms.

Table B-2. Quantifiers: Expressions that enforce quantity on the preceding expression (continued)

Quantifier Meaning

Regular Expression Reference | 491

(?:) Noncapturing group.

PS >"A1" -match '((A|B)\d)'; $matches
True

Name Value
---- -----
2 A
1 A1
0 A1

PS >"A1" -match '((?:A|B)\d)'; $matches
True

Name Value
---- -----
1 A1
0 A1

(?imnsx-imnsx:) Applies or disables the given option for this group. Supported options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS >"Te`nst" -match '(T e.st)'
False
PS >"Te`nst" -match '(?sx:T e.st)'
True

(?=) Zero-width positive lookahead assertion. Ensures that the given pattern matches to the
right, without actually performing the match.

PS >"555-1212" -match '(?=...-)(.*)'; $matches[1]
True
555-1212

(?!) Zero-width negative lookahead assertion. Ensures that the given pattern does not match
to the right, without actually performing the match.

PS >"friendly" -match '(?!friendly)friend'
False

(?<=) Zero-width positive lookbehind assertion. Ensures that the given pattern matches to the
left, without actually performing the match.

PS >"public int X" -match '^.*(?<=public)int .*$'
True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given pattern does not match
to the left, without actually performing the match.

PS >"private int X" -match '^.*(?<!private)int .*$'
False

Table B-3. Grouping constructs: Expressions that let you group characters, patterns, and other
expressions (continued)

Grouping construct Description

492 | Appendix B: Regular Expression Reference

(?>) Nonbacktracking subexpression. Matches only if this subexpression can be matched com-
pletely.

PS >"Hello World" -match '(Hello.*)orld'
True
PS >"Hello World" -match '(?>Hello.*)orld'
False

The nonbacktracking version of the subexpression fails to match, as its complete match
would be “Hello World”.

Table B-4. Atomic zero-width assertions: Patterns that restrict where a match may occur

Assertion Restriction

^ The match must occur at the beginning of the string (or line, if the Multiline option is in
effect).

PS >"Test" -match '^est'
False

$ The match must occur at the end of the string (or line, if the Multiline option is in effect).

PS >"Test" -match 'Tes$'
False

\A The match must occur at the beginning of the string.

PS >"The`nTest" -match '(?m:^Test)'
True
PS >"The`nTest" -match '(?m:\ATest)'
False

\Z The match must occur at the end of the string, or before \n at the end of the string.

PS >"The`nTest`n" -match '(?m:The$)'
True
PS >"The`nTest`n" -match '(?m:The\Z)'
False
PS >"The`nTest`n" -match 'Test\Z'
True

\z The match must occur at the end of the string.

PS >"The`nTest`n" -match 'Test\z'
False

\G The match must occur where the previous match ended. Used with the System.Text.
RegularExpressions.Match.NextMatch() method.

\b The match must occur on a word boundary—the first or last characters in words separated
by nonalphanumeric characters.

PS >"Testing" -match 'ing\b'
True

\B The match must not occur on a word boundary.

PS >"Testing" -match 'ing\B'
False

Table B-3. Grouping constructs: Expressions that let you group characters, patterns, and other
expressions (continued)

Grouping construct Description

Regular Expression Reference | 493

Table B-5. Substitution patterns: Patterns used in a regular expression replace operation

Pattern Substitution

$number The text matched by group number <number>.

PS >"Test" -replace "(.*)st",'$1ar'
Tear

${name} The text matched by group named <name>.

PS >"Test" -replace "(?<pre>.*)st",'${pre}ar'
Tear

$$ A literal $.

PS >"Test" -replace ".",'$$'
$$$$

$& A copy of the entire match.

PS >"Test" -replace "^.*$",'Found: $&'
Found: Test

$` The text of the input string that precedes the match.

PS >"Test" -replace "est$",'Te$`'
TTeT

$' The text of the input string that follows the match.

PS >"Test" -replace "^Tes",'Res$'''
Restt

$+ The last group captured.

PS >"Testing" -replace "(.*)ing",'$+ed'
Tested

$_ The entire input string.

PS >"Testing" -replace "(.*)ing",'String: $_'
String: Testing

Table B-6. Alternation constructs: Expressions that allow you to perform either/or logic

Alternation construct Description

| Matches any of the terms separated by the vertical bar character.

PS >"Test" -match '(B|T)est'
True

(?(expression)yes|no) Matches the yes term if expression matches at this point. Otherwise, matches the no term.
The no term is optional.

PS >"3.14" -match '(?(\d)3.14|Pi)'
True
PS >"Pi" -match '(?(\d)3.14|Pi)'
True
PS >"2.71" -match '(?(\d)3.14|Pi)'
False

(?(name)yes|no) Matches the yes term if the capture group named name has a capture at this point. Other-
wise, matches the no term. The no term is optional.

PS >"123" -match '(?<one>1)?(?(one)23|234)'
True
PS >"23" -match '(?<one>1)?(?(one)23|234)'
False
PS >"234" -match '(?<one>1)?(?(one)23|234)'
True

494 | Appendix B: Regular Expression Reference

Table B-7. Backreference constructs: Expressions that refer to a capture group within the
expression

Backreference construct Refers to

\number Group number number in the expression.

PS >"|Text|" -match '(.)Text\1'
True
PS >"|Text+" -match '(.)Text\1'
False

\k<name> The group named name in the expression.

PS >"|Text|" -match '(?<Symbol>.)Text\k<Symbol>'
True
PS >"|Text+" -match '(?<Symbol>.)Text\k<Symbol>'
False

Table B-8. Other constructs: Other expressions that modify a regular expression

Construct Description

(?imnsx-imnsx) Applies or disables the given option for the rest of this expression. Supported options are:

i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS >"Te`nst" -match '(?sx)T e.st'
True

(?#) Inline comment. This terminates at the first closing parenthesis.

PS >"Test" -match '(?# Match 'Test')Test'
True

[to end of line] Comment form allowed when the regular expression has the IgnoreWhitespace option
enabled.

PS >"Test" -match '(?x)Test # Matches Test'
True

Table B-9. Character escapes: Character sequences that represent another character

Escaped character Match

<ordinary characters> Characters other than . $ ^ { [(|) * + ? \ match themselves.

\a A bell (alarm) \u0007.

\b A backspace \u0008 if in a [] character class. In a regular expression, \b denotes a word
boundary (between \w and \W characters) except within a [] character class, where \b
refers to the backspace character. In a replacement pattern, \b always denotes a backspace.

\t A tab \u0009.

\r A carriage return \u000D.

\v A vertical tab \u000B.

\f A form feed \u000C.

\n A new line \u000A.

Regular Expression Reference | 495

\e An escape \u001B.

\ddd An ASCII character as octal (up to three digits.) Numbers with no leading zero are treated
as backreferences if they have only one digit, or if they correspond to a capturing group
number.

\xdd An ASCII character using hexadecimal representation (exactly two digits).

\cC An ASCII control character; for example, \cC is control-C.

\udddd A Unicode character using hexadecimal representation (exactly four digits).

\ When followed by a character that is not recognized as an escaped character, matches that
character. For example, * is the literal character *.

Table B-9. Character escapes: Character sequences that represent another character (continued)

Escaped character Match

496

Appendix CAPPENDIX C

PowerShell Automatic Variables 3

PowerShell defines and populates several variables automatically. These variables let
you access information about the execution environment, PowerShell preferences,
and more.

Table C-1 provides a listing of these automatic variables and their meanings.

Table C-1. Windows PowerShell automatic variables: Variables automatically used and set by
Windows PowerShell

Variable Meaning

$$ Last token of the last line received by the shell.

$? Success/fail status of the last operation.

$^ First token of the last line received by the shell.

$_ Current pipeline object in a pipelined script block.

$args Array of parameters passed to the script, function, or script block.

$confirmPreference Preference that controls the level of impact that operations may have before
requesting confirmation. Supports the values none, low, medium, high. A value
of none disables confirmation messages.

$consoleFilename Filename of the PowerShell console file that configured this session, if one was
used.

$currentlyExecutingCommand Currently executing command, when in a suspended prompt.

$debugPreference Preference that controls how PowerShell should handle debug output written by a
script or cmdlet. Supports the values SilentlyContinue, Continue,
Inquire, and Stop.

$error Array that holds the (terminating and nonterminating) errors generated in the
shell.

$errorActionPreference Preference that controls how PowerShell should handle error output written by a
script or cmdlet. Supports the values SilentlyContinue, Continue,
Inquire, and Stop.

$errorView Preference that controls how PowerShell should output errors in the shell. Supports
the values of Normal and CategoryView (a more succinct and categorical view
of the error).

PowerShell Automatic Variables | 497

$executionContext Means by which scripts can access the APIs typically used by cmdlets and providers.

$false Variable that represents the Boolean value False.

$foreach Enumerator within a foreach loop.

$formatEnumerationLimit Limit on how deep into an object the formatting and output facilities travel before
outputting an object.

$home User’s home directory.

$host Means by which scripts can access the APIs and implementation details of the cur-
rent host and user interface.

$input Current input pipeline in a pipelined script block.

$lastExitCode Exit code of the last command—can be explicitly set by scripts, and is automati-
cally set when calling native executables.

$logEngineHealthEvent Preference that tells PowerShell to log engine health events, such as errors and
exceptions. Supports the values $true and $false.

$logEngineLifecycleEvent Preference that tells PowerShell to log engine lifecycle events, such as Start and
Stop. Supports the values $true and $false.

$logCommandHealthEvent Preference that tells PowerShell to log command health events, such as errors and
exceptions. Supports the values $true and $false.

$logCommandLifecycleEvent Preference that tells PowerShell to log command lifecycle events such as Start and
Stop. Supports the values $true and $false.

$logProviderHealthEvent Preference that tells PowerShell to log provider health events, such as errors and
exceptions. Supports the values $true and $false.

$logProviderLifecycleEvent Preference that tells PowerShell to log provider lifecycle events, such asStart and
Stop. Supports the values $true and $false.

$matches Results of the last successful regular expression match (through the–match
operator.)

$maximumAliasCount Limit on how many aliases may be defined.

$maximumDriveCount Limit on how many drives may be defined. Does not include default system drives.

$maximumErrorCount Limit on how many errors PowerShell retains in the $error collection.

$maximumFunctionCount Limit on how many functions may be defined.

$maximumHistoryCount Limit on how many history items are retained.

$maximumVariableCount Limit on how many variables may be defined.

$myInvocation Information about the context under which the script, function, or script block was
run, including detailed information about the command (MyCommand), the script
that defines it (ScriptName).

$nestedPromptLevel Nesting level of the current prompt. Incremented by operations that enter a nested
prompt (such as $host.EnterNestedPrompt()) and decremented by the
exit statement.

$null Variable that represents the concept of Null.

$ofs Output field separator. Placed between elements when PowerShell outputs a list as
a string.

Table C-1. Windows PowerShell automatic variables: Variables automatically used and set by
Windows PowerShell (continued)

Variable Meaning

498 | Appendix C: PowerShell Automatic Variables

$outputEncoding Character encoding used when sending pipeline data to external processes.

$pid Process ID of the current PowerShell instance.

$profile Location and filename of the PowerShell profile for this host.

$progressPreference Preference that controls how PowerShell should handle progress output written by
a script or cmdlet. Supports the values SilentlyContinue, Continue,
Inquire, and Stop.

$psHome Installation location of PowerShell.

$pwd Current working directory.

$shellId Shell identifier of this host.

$stackTrace Detailed stack trace information of the last error.

$this Reference to the current object in ScriptMethods and ScriptProperties.

$transcript Filename used by the Start-Transcript cmdlet.

$true Variable that represents the Boolean value True.

$verboseHelpErrors Preference that tells PowerShell to output detailed error information when parsing
malformed help files. Supports the values $true and $false.

$verbosePreference Preference that controls how PowerShell should handle verbose output written by
a script or cmdlet. Supports the values SilentlyContinue, Continue,
Inquire, and Stop.

$warningPreference Preference that controls how PowerShell should handle warning output written by
a script or cmdlet. Supports the values SilentlyContinue, Continue,
Inquire, and Stop.

$whatifPreference Preference that controls how PowerShell should handle confirmation requests
called by a script or cmdlet. Supports the values SilentlyContinue,
Continue, Inquire, and Stop.

Table C-1. Windows PowerShell automatic variables: Variables automatically used and set by
Windows PowerShell (continued)

Variable Meaning

499

Appendix D APPENDIX D

Standard PowerShell Verbs4

Cmdlets and scripts should be named using a Verb-Noun syntax. For example, Get-
ChildItem. The official guidance is that, with rare exception, cmdlets should use the
standard PowerShell verbs. They should avoid any synonyms or concepts that can be
mapped to the standard. This allows administrators to quickly understand a set of
cmdlets that use a new noun.

Verbs should be phrased in the present tense, and nouns should be singular. Tables
D-1 through D-6 list the different categories of standard PowerShell verbs.

Table D-1. Standard Windows PowerShell common verbs

Verb Meaning Synonyms

Add Adds a resource to a container, or attaches an element to
another element

Append, Attach, Concatenate, Insert

Clear Removes all elements from a container Flush, Erase, Release, Unmark, Unset,
Nullify

Copy Copies a resource to another name or container Duplicate, Clone, Replicate

Get Retrieves data Read, Open, Cat, Type, Dir, Obtain,
Dump, Acquire, Examine, Find, Search

Hide Makes a display not visible Suppress

Join Joins a resource Combine, Unite, Connect, Associate

Lock Locks a resource Restrict, Bar

Move Moves a resource Transfer, Name, Migrate

New Creates a new resource Create, Generate, Build, Make, Allocate

Push Puts an item onto the top of a stack Put, Add, Copy

Pop Removes an item from the top of a stack Remove, Paste

Remove Removes a resource from a container Delete, Kill

Rename Gives a resource a new name Ren, Swap

Search Finds a resource (or summary information about that resource)
in a collection; (does not actually retrieve the resource but pro-
vides information to be used when retrieving it)

Find, Get, Grep, Select

500 | Appendix D: Standard PowerShell Verbs

Select Creates a subset of data from a larger data set Pick, Grep, Filter

Set Places data Write, Assign, Configure

Show Retrieves, formats, and displays information Display, Report

Split Separates data into smaller elements Divide, Chop, Parse

Unlock Unlocks a resource Free, Unrestrict

Use Applies or associates a resource with a context With, Having

Table D-2. Standard Windows PowerShell communication verbs

Verb Meaning Synonyms

Connect Connects a source to a destination Join, Telnet

Disconnect Disconnects a source from a destination Break, Logoff

Read Acquires information from a nonconnected source Prompt, Get

Receive Acquires information from a connected source Read, Accept, Peek

Send Writes information to a connected destination Put, Broadcast, Mail

Write Writes information to a non-connected destination Puts, Print

Table D-3. Standard Windows PowerShell data verbs

Verb Meaning Synonyms

Backup Backs up data Save, Burn

Checkpoint Creates a snapshot of the current state of data, or its configu-
ration

Diff, StartTransaction

Compare Compares a resource with another resource Diff, Bc

Convert Changes from one representation to another, when the
cmdlet supports bidirectional conversion, or conversion of
many data types

Change, Resize, Resample

ConvertFrom Converts from one primary input to several supported outputs Export, Output, Out

ConvertTo Converts from several supported inputs to one primary output Import, Input, In

Dismount Detaches a name entity from a location in a namespace Dismount, Unlink

Export Stores the primary input resource into a backing store or
interchange format

Extract, Backup

Import Creates a primary output resource from a backing store or
interchange format

Load, Read

Initialize Prepares a resource for use, and initializes it to a default state Setup, Renew, Rebuild

Limit Applies constraints to a resource Quota, Enforce

Merge Creates a single data instance from multiple data sets Combine, Join

Mount Attach a named entity to a location in a namespace Attach, Link

Out Sends data to a terminal location Print, Format, Send

Publish Make a resource known or visible to others Deploy, Release, Install

Table D-1. Standard Windows PowerShell common verbs (continued)

Verb Meaning Synonyms

Standard PowerShell Verbs | 501

Restore Restores a resource to a set of conditions that have been pre-
defined or set by a checkpoint

Repair, Return, Fix

Unpublish Removes a resource from public visibility Uninstall, Revert

Update Updates or refreshes a resource Refresh, Renew, Index

Table D-4. Standard Windows PowerShell diagnostic verbs

Verb Meaning Synonyms

Debug Examines a resource, diagnoses operational problems Attach, Diagnose

Measure Identifies resources consumed by an operation, or retrieves
statistics about a resource

Calculate, Determine, Analyze

Ping Determines if a resource is active and responsive. In most
instances, this should be replaced by the verb, Test

Connect, Debug

Resolve Maps a shorthand representation to a more complete one Expand, Determine

Test Verify the validity or consistency of a resource Diagnose, Verify, Analyze

Trace Follow the activities of the resource Inspect, Dig

Table D-5. Standard Windows PowerShell life cycle verbs

Verb Meaning Synonyms

Disable Configures an item to be unavailable Halt, Hide

Enable Configures an item to be available Allow, Permit

Install Places a resource in the specified location and optionally ini-
tializes it

Setup, Configure

Invoke Calls or launches an activity that cannot be stopped Run, Call, Perform

Restart Stops an operation and starts it again Recycle, Hup

Resume Begins an operation after it has been suspended Continue

Start Begins an activity Launch, Initiate

Stop Discontinues an activity Halt, End, Discontinue

Suspend Pauses an operation, but does not discontinue it Pause, Sleep, Break

Uninstall Removes a resource from the specified location Remove, Clear, Clean

Wait To pause until an expected event occurs Sleep, Pause, Join

Table D-6. Standard Windows PowerShell security verbs

Verb Meaning Synonyms

Block Restricts access to a resource Prevent, Limit, Deny

Grant Grants access to a resource Allow, Enable

Revoke Removes access to a resource Remove, Disable

Unblock Removes a restriction of access to a resource Clear, Allow

Table D-3. Standard Windows PowerShell data verbs (continued)

Verb Meaning Synonyms

502

Appendix EAPPENDIX E

Selected .NET Classes and Their Uses 5

Tables E-1 through E-16 provide pointers to types in the .NET Framework that use-
fully complement the functionality that PowerShell provides. For detailed descrip-
tions and documentation, search http://msdn.microsoft.com for the official
documentation.

Table E-1. Windows PowerShell

Class Description

System.Management.Automation.PSObject Represents a PowerShell object to which you can add notes,
properties, and more.

Table E-2. Utility

Class Description

System.DateTime Represents an instant in time, typically expressed as a date
and time of day.

System.Guid Represents a globally unique identifier (GUID).

System.Math Provides constants and static methods for trigonometric, log-
arithmic, and other common mathematical functions.

System.Random Represents a pseudorandom number generator, a device that
produces a sequence of numbers that meet certain statistical
requirements for randomness.

System.Convert Converts a base data type to another base data type.

System.Environment Provides information about, and means to manipulate, the
current environment and platform.

System.Console Represents the standard input, output, and error streams for
console applications.

System.Text.RegularExpressions.Regex Represents an immutable regular expression.

System.Diagnostics.Debug Provides a set of methods and properties that help debug
your code.

System.Diagnostics.EventLog Provides interaction with Windows event logs.

Selected .NET Classes and Their Uses | 503

System.Diagnostics.Process Provides access to local and remote processes and enables
you to start and stop local system processes.

System.Diagnostics.Stopwatch Provides a set of methods and properties that you can use to
accurately measure elapsed time.

System.Media.SoundPlayer Controls playback of a sound from a .wav file.

Table E-3. Collections and object utilities

Class Description

System.Array Provides methods for creating, manipulating, searching, and
sorting arrays, thereby serving as the base class for all arrays
in the Common Language Runtime.

System.Enum Provides the base class for enumerations.

System.String Represents text as a series of Unicode characters.

System.Text.StringBuilder Represents a mutable string of characters.

System.Collections.Specialized.
OrderedDictionary

Represents a collection of key/value pairs that are accessible
by the key or index.

System.Collections.ArrayList Implements the IList interface using an array whose size is
dynamically increased as required.

Table E-4. The .NET Framework

Class Description

System.AppDomain Represents an application domain, which is an isolated envi-
ronment where applications execute.

System.Reflection.Assembly Defines an Assembly, which is a reusable, versionable, and
self-describing building block of a common language run-
time application.

System.Type Represents type declarations: class types, interface types,
array types, value types, enumeration types, type parame-
ters, generic type definitions, and open or closed constructed
generic types.

System.Threading.Thread Creates and controls a thread, sets its priority, and gets its
status.

System.Runtime.InteropServices.Marshal Provides a collection of methods for allocating unmanaged
memory, copying unmanaged memory blocks, and convert-
ing managed to unmanaged types, as well as other miscella-
neous methods used when interacting with unmanaged
code.

Microsoft.CSharp.CSharpCodeProvider Provides access to instances of the C# code generator and
code compiler.

Table E-2. Utility (continued)

Class Description

504 | Appendix E: Selected .NET Classes and Their Uses

Table E-5. Registry

Class Description

Microsoft.Win32.Registry Provides RegistryKey objects that represent the root keys in
the Windows registry, and static methods to access key/value
pairs.

Microsoft.Win32.RegistryKey Represents a key-level node in the Windows registry.

Table E-6. Input and output

Class Description

System.IO.Stream Provides a generic view of a sequence of bytes.

System.IO.BinaryReader Reads primitive data types as binary values.

System.IO.BinaryWriter Writes primitive types in binary to a stream.

System.IO.BufferedStream Adds a buffering layer to read and write operations on
another stream.

System.IO.Directory Exposes static methods for creating, moving, and enumerat-
ing through directories and subdirectories.

System.IO.FileInfo Provides instance methods for the creation, copying, dele-
tion, moving, and opening of files, and aids in the creation of
FileStream objects.

System.IO.DirectoryInfo Exposes instance methods for creating, moving, and enumer-
ating through directories and subdirectories.

System.IO.File Provides static methods for the creation, copying, deletion,
moving, and opening of files, and aids in the creation of
FileStream objects.

System.IO.MemoryStream Creates a stream whose backing store is memory.

System.IO.Path Performs operations on String instances that contain file or
directory path information. These operations are performed
in a cross-platform manner.

System.IO.TextReader Represents a reader that can read a sequential series of
characters.

System.IO.StreamReader Implements a TextReader that reads characters from a
byte stream in a particular encoding.

System.IO.TextWriter Represents a writer that can write a sequential series of
characters.

System.IO.StreamWriter Implements a TextWriter for writing characters to a
stream in a particular encoding.

System.IO.StringReader Implements a TextReader that reads from a string.

System.IO.StringWriter Implements a TextWriter for writing information to a
string.

System.IO.Compression.DeflateStream Provides methods and properties used to compress and
decompress streams using the Deflate algorithm.

System.IO.Compression.GZipStream Provides methods and properties used to compress and
decompress streams using the GZip algorithm.

Selected .NET Classes and Their Uses | 505

System.IO.FileSystemWatcher Listens to the file system change notifications and raises
events when a directory, or file in a directory, changes.

Table E-7. Security

Class Description

System.Security.Principal.WindowsIdentity Represents a Windows user.

System.Security.Principal.WindowsPrincipal Allows code to check the Windows group membership of a
Windows user.

System.Security.Principal.WellKnownSidType Defines a set of commonly used security identifiers (SIDs).

System.Security.Principal.
WindowsBuiltInRole

Specifies common roles to be used with IsInRole.

System.Security.SecureString Represents text that should be kept confidential. The text is
encrypted for privacy when being used, and deleted from
computer memory when no longer needed.

System.Security.Cryptography.
TripleDESCryptoServiceProvider

Defines a wrapper object to access the cryptographic service
provider (CSP) version of the TripleDES algorithm.

System.Security.Cryptography.
PasswordDeriveBytes

Derives a key from a password using an extension of the
PBKDF1 algorithm.

System.Security.Cryptography.SHA1 Computes the SHA1 hash for the input data.

System.Security.AccessControl.
FileSystemSecurity

Represents the access control and audit security for a file or
directory.

System.Security.AccessControl.
RegistrySecurity

Represents the Windows access control security for a registry
key.

Table E-8. User interface

Class Description

System.Windows.Forms.Form Represents a window or dialog box that makes up an applica-
tion’s user interface.

System.Windows.Forms.FlowLayoutPanel Represents a panel that dynamically lays out its contents.

Table E-9. Image manipulation

Class Description

System.Drawing.Image A class that provides functionality for the Bitmap and
Metafile classes.

System.Drawing.Bitmap Encapsulates a GDI+ bitmap, which consists of the pixel data
for a graphics image and its attributes. A bitmap is an object
used to work with images defined by pixel data.

Table E-6. Input and output (continued)

Class Description

506 | Appendix E: Selected .NET Classes and Their Uses

Table E-10. Networking

Class Description

System.Uri Provides an object representation of a uniform resource iden-
tifier (URI) and easy access to the parts of the URI.

System.Net.NetworkCredential Provides credentials for password-based authentication
schemes such as basic, digest, Kerberos authentication, and
NTLM.

System.Net.Dns Provides simple domain name resolution functionality.

System.Net.FtpWebRequest Implements a File Transfer Protocol (FTP) client.

System.Net.HttpWebRequest Provides an HTTP-specific implementation of the
WebRequest class.

System.Net.WebClient Provides common methods for sending data to and receiving
data from a resource identified by a URI.

System.Net.Sockets.TcpClient Provides client connections for TCP network services.

System.Net.Mail.MailAddress Represents the address of an electronic mail sender or
recipient.

System.Net.Mail.MailMessage Represents an email message that can be sent using the
SmtpClient class.

System.Net.Mail.SmtpClient Allows applications to send email by using the Simple Mail
Transfer Protocol (SMTP).

System.IO.Ports.SerialPort Represents a serial port resource.

System.Web.HttpUtility Provides methods for encoding and decoding URLs when
processing web requests.

Table E-11. XML

Class Description

System.Xml.XmlTextWriter Represents a writer that provides a fast, noncached, forward-
only way of generating streams or files containing XML data
that conforms to the W3C Extensible Markup Language
(XML) 1.0 and the Namespaces in XML recommendations.

System.Xml.XmlDocument Represents an XML document.

Table E-12. Windows Management Instrumentation (WMI)

Class Description

System.Management.ManagementObject Represents a WMI instance.

System.Management.ManagementClass Represents a management class. A management class is a
WMI class such as Win32_LogicalDisk, which can rep-
resent a disk drive, and Win32_Process, which represents
a process such as an instance of Notepad.exe. The members of
this class enable you to access WMI data using a specific WMI
class path. For more information, see “Win32 Classes” in the
Windows Management Instrumentation documentation in
the MSDN Library at http://msdn.microsoft.com/library.

Selected .NET Classes and Their Uses | 507

System.Management.ManagementObjectSearcher Retrieves a collection of WMI management objects based on
a specified query. This class is one of the more commonly
used entry points to retrieving management information. For
example, it can be used to enumerate all disk drives, network
adapters, processes, and many more management objects on
a system, or to query for all network connections that are up,
services that are paused, and so on. When instantiated, an
instance of this class takes as input a WMI query represented
in an ObjectQuery or its derivatives, and optionally a
ManagementScope representing the WMI namespace to
execute the query in. It can also take additional advanced
options in an EnumerationOptions. When the Get
method on this object is invoked, the
ManagementObjectSearcher executes the given query
in the specified scope and returns a collection of manage-
ment objects that match the query in a
ManagementObjectCollection.

System.Management.
ManagementDateTimeConverter

Provides methods to convert DMTF datetime and time inter-
vals to CLR-compliant DateTime and TimeSpan formats
and vice versa.

System.Management.ManagementEventWatcher Subscribes to temporary event notifications based on a speci-
fied event query.

Table E-13. Active Directory

Class Description

System.DirectoryServices.DirectorySearcher Performs queries against Active Directory.

System.DirectoryServices.DirectoryEntry The DirectoryEntry class encapsulates a node or object
in the Active Directory hierarchy.

Table E-14. Database

Class Description

System.Data.DataSet Represents an in-memory cache of data.

System.Data.DataTable Represents one table of in-memory data.

System.Data.SqlClient.SqlCommand Represents a Transact-SQL statement or stored proce-
dure to execute against a SQL Server database.

System.Data.SqlClient.SqlConnection Represents an open connection to a SQL Server database.

System.Data.SqlClient.SqlDataAdapter Represents a set of data commands and a database connec-
tion that are used to fill the DataSet and update a SQL
Server database.

System.Data.Odbc.OdbcCommand Represents a SQL statement or stored procedure to execute
against a data source.

Table E-12. Windows Management Instrumentation (WMI) (continued)

Class Description

508 | Appendix E: Selected .NET Classes and Their Uses

System.Data.Odbc.OdbcConnection Represents an open connection to a data source.

System.Data.Odbc.OdbcDataAdapter Represents a set of data commands and a connection to a
data source that are used to fill the DataSet and update the
data source.

Table E-15. Message queuing

Class Description

System.Messaging.MessageQueue Provides access to a queue on a Message Queuing server.

Table E-16. Transactions

Class Description

System.Transactions.Transaction Represents a transaction.

Table E-14. Database (continued)

Class Description

509

Appendix F APPENDIX F

WMI Reference6

The Windows Management Instrumentation (WMI) facilities in Windows offer
thousands of classes that provide information of interest to administrators. Table F-1
lists the categories and subcategories covered by WMI, and can be used to get a gen-
eral idea of the scope of WMI classes. Table F-2 provides a selected subset of the
most useful WMI classes. For more information about a category, search the official
WMI documentation at http://msdn.microsoft.com.

Table F-1. WMI class categories and subcategories

Category Subcategory

Computer System Hardware Cooling device, input device, mass storage, motherboard, controller
and port, networking device, power, printing, telephony, video, and
monitor.

Operating System COM, desktop, drivers, filesystem, job objects, memory and page files,
multimedia audio/visual, networking, operating system events, oper-
ating system settings, processes, registry, scheduler jobs, security, ser-
vices, shares, Start menu, storage, users, Windows NT event log,
Windows product activation.

WMI Service Management WMI configuration, WMI management.

General Installed applications, Performance counter, security descriptor.

Table F-2. Selected WMI Classes

Class Description

Win32_BaseBoard Represents a baseboard, which is also known as a motherboard or sys-
tem board.

Win32_BIOS Represents the attributes of the computer system’s basic input/output
services (BIOS) that are installed on a computer.

Win32_BootConfiguration Represents the boot configuration of a Windows system.

Win32_CDROMDrive Represents a CD-ROM drive on a Windows computer system. Be aware
that the name of the drive does not correspond to the logical drive let-
ter assigned to the device.

510 | Appendix F: WMI Reference

Win32_ComputerSystem Represents a computer system in a Windows environment.

Win32_Processor Represents a device that can interpret a sequence of instructions on a
computer running on a Windows operating system. On a multiproces-
sor computer, one instance of the Win32_Processor class exists for
each processor.

Win32_ComputerSystemProduct Represents a product. This includes software and hardware used on
this computer system.

CIM_DataFile Represents a named collection of data or executable code. Currently,
the provider returns files on fixed and mapped logical disks. In the
future, only instances of files on local fixed disks will be returned.

Win32_DCOMApplication Represents the properties of a DCOM application.

Win32_Desktop Represents the common characteristics of a user’s desktop. The proper-
ties of this class can be modified by the user to customize the desktop.

Win32_DesktopMonitor Represents the type of monitor or display device attached to the com-
puter system.

Win32_DeviceMemoryAddress Represents a device memory address on a Windows system.

Win32_DiskDrive Represents a physical disk drive as seen by a computer running the
Windows operating system. Any interface to a Windows physical disk
drive is a descendant (or member) of this class. The features of the disk
drive seen through this object correspond to the logical and manage-
ment characteristics of the drive. In some cases, this may not reflect the
actual physical characteristics of the device. Any object based on
another logical device would not be a member of this class.

Win32_DiskQuota Tracks disk space usage for NTFS filesystem volumes. A system admin-
istrator (SA) can configure Windows to prevent further disk space use,
and log an event when a user exceeds a specified disk space limit. An
SA can also log an event when a user exceeds a specified disk space
warning level. This class is new in Windows XP.

Win32_DMAChannel Represents a direct memory access (DMA) channel on a Windows com-
puter system. DMA is a method of moving data from a device to mem-
ory (or vice versa) without the help of the microprocessor. The system
board uses a DMA controller to handle a fixed number of channels, each
of which can be used by one (and only one) device at a time.

Win32_Environment Represents an environment or system environment setting on a Win-
dows computer system. Querying this class returns environment vari-
ables found in:

HKLM\System\CurrentControlSet\Control\
 Sessionmanager\Environment

as well as:

HKEY_USERS\<user sid>\Environment

Win32_Directory Represents a directory entry on a Windows computer system. A
directory is a type of file that logically groups data files and provides
path information for the grouped files. Win32_Directory does not
include directories of network drives.

Table F-2. Selected WMI Classes (continued)

Class Description

WMI Reference | 511

Win32_Group Represents data about a group account. A group account allows access
privileges to be changed for a list of users. Example: Administrators.

Win32_IDEController Manages the capabilities of an integrated device electronics (IDE) con-
troller device.

Win32_IRQResource Represents an interrupt request line (IRQ) number on a Windows com-
puter system. An interrupt request is a signal sent to the CPU by a
device or program for time-critical events. IRQ can be hardware- or
software-based.

Win32_ScheduledJob Represents a job created with the AT command. The Win32_
ScheduledJob class does not represent a job created with the
Scheduled Task Wizard from the Control Panel. You cannot change a
task created by WMI in the Scheduled Tasks UI.

Windows 2000 and Windows NT 4.0: You can use the Scheduled Tasks
UI to modify the task you originally created with WMI. However,
although the task is successfully modified, you can no longer access the
task using WMI.

Each job scheduled against the schedule service is stored persistently
(the scheduler can start a job after a reboot), and is executed at the
specified time and day of the week or month. If the computer is not
active or if the scheduled service is not running at the specified job
time, the schedule service runs the specified job on the next day at the
specified time.

Jobs are scheduled according to Universal Coordinated Time (UTC) with
bias offset from Greenwich mean time (GMT), which means that a job
can be specified using any time zone. The Win32_ScheduledJob
class returns the local time with UTC offset when enumerating an
object, and converts to local time when creating new jobs. For exam-
ple, a job specified to run on a computer in Boston at 10:30 P.M. Mon-
day PST time will be scheduled to run locally at 1:30 A.M. Tuesday EST.
Note that a client must take into account whether Daylight Savings
Time is in operation on the local computer, and if it is, then subtract a
bias of 60 minutes from the UTC offset.

Win32_LoadOrderGroup Represents a group of system services that define execution dependen-
cies. The services must be initiated in the order specified by the Load
Order Group, as the services are dependent on each other. These
dependent services require the presence of the antecedent services to
function correctly. The data in this class is derived by the provider from
the registry key:

System\CurrentControlSet\Control\
GroupOrderList

Win32_LogicalDisk Represents a data source that resolves to an actual local storage device
on a Windows system.

Win32_LogonSession Describes the logon session or sessions associated with a user logged
on to Windows NT or Windows 2000.

Win32_CacheMemory Represents internal and external cache memory on a computer system.

Table F-2. Selected WMI Classes (continued)

Class Description

512 | Appendix F: WMI Reference

Win32_LogicalMemoryConfiguration Represents the layout and availability of memory on a Windows sys-
tem. Beginning with Windows Vista, this class is no longer available in
the operating system.

Windows XP and Windows Server 2003: This class is no longer sup-
ported. Use the Win32_OperatingSystem class instead.

Windows 2000: This class is available and supported.

Win32_PhysicalMemoryArray Represents details about the computer system physical memory. This
includes the number of memory devices, memory capacity available,
and memory type, for example, system or video memory.

WIN32_NetworkClient Represents a network client on a Windows system. Any computer sys-
tem on the network with a client relationship to the system is a descen-
dant (or member) of this class (for example, a computer running
Windows 2000 Workstation or Windows 98 that is part of a Windows
2000 domain).

Win32_NetworkLoginProfile Represents the network login information of a specific user on a Win-
dows system. This includes but is not limited to password status, access
privileges, disk quotas, and login directory paths.

Win32_NetworkProtocol Represents a protocol and its network characteristics on a Win32 com-
puter system.

Win32_NetworkConnection Represents an active network connection in a Windows environment.

Win32_NetworkAdapter Represents a network adapter of a computer running on a Windows
operating system.

Win32_NetworkAdapterConfiguration Represents the attributes and behaviors of a network adapter. This
class includes extra properties and methods that support the manage-
ment of the TCP/IP and Internetworking Packet Exchange (IPX) proto-
cols that are independent from the network adapter.

Win32_NTDomain Represents a Windows NT domain.

Win32_NTLogEvent Used to translate instances from the Windows NT event log. An appli-
cation must have SeSecurityPrivilege to receive events from
the security event log; otherwise, “Access Denied” is returned to the
application.

Win32_NTEventlogFile Represents a logical file or directory of Windows NT events. The file is
also known as the event log.

Win32_OnBoardDevice Represents common adapter devices built into the motherboard (sys-
tem board).

Win32_OperatingSystem Represents an operating system installed on a computer running on a
Windows operating system. Any operating system that can be installed
on a Windows system is a descendant or member of this class. Win32_
OperatingSystem is a singleton class. To get the single instance,
use @ for the key.

Windows Server 2003, Windows XP, Windows 2000, and Windows NT
4.0: If a computer has multiple operating systems installed, this class
returns only an instance for the currently active operating system.

Table F-2. Selected WMI Classes (continued)

Class Description

WMI Reference | 513

Win32_PageFileUsage Represents the file used for handling virtual memory file swapping on a
Win32 system. Information contained within objects instantiated from
this class specify the runtime state of the page file.

Win32_PageFileSetting Represents the settings of a page file. Information contained within
objects instantiated from this class specify the page file parameters
used when the file is created at system startup. The properties in this
class can be modified and deferred until startup. These settings are dif-
ferent from the runtime state of a page file expressed through the
associated class Win32_PageFileUsage.

Win32_DiskPartition Represents the capabilities and management capacity of a partitioned
area of a physical disk on a Windows system. Example: Disk #0, Parti-
tion #1.

Win32_PortResource Represents an I/O port on a Windows computer system.

Win32_PortConnector Represents physical connection ports, such as DB-25 pin male, Centron-
ics, or PS/2.

Win32_Printer Represents a device connected to a computer running on a Microsoft
Windows operating system that can produce a printed image or text on
paper or other medium.

Win32_PrinterConfiguration Represents the configuration for a printer device. This includes capabil-
ities such as resolution, color, fonts, and orientation.

Win32_PrintJob Represents a print job generated by a Windows application. Any unit of
work generated by the Print command of an application that is running
on a computer running on a Windows operating system is a descen-
dant or member of this class.

Win32_Process Represents a process on an operating system.

Win32_Product Represents products as they are installed by Windows Installer. A prod-
uct generally correlates to one installation package. For information
about support or requirements for installation of a specific operating
system, visit http://msdn.microsoft.com and search for “Operating Sys-
tem Availability of WMI Components.”

Win32_QuickFixEngineering Represents system-wide Quick Fix Engineering (QFE) or updates that
have been applied to the current operating system.

Win32_QuotaSetting Contains setting information for disk quotas on a volume.

Win32_OSRecoveryConfiguration Represents the types of information that will be gathered from mem-
ory when the operating system fails. This includes boot failures and
system crashes.

Win32_Registry Represents the system registry on a Windows computer system.

Win32_SCSIController Represents a SCSI controller on a Windows system.

Win32_PerfRawData_PerfNet_Server Provides raw data from performance counters that monitor communi-
cations using the WINS Server service.

Table F-2. Selected WMI Classes (continued)

Class Description

514 | Appendix F: WMI Reference

Win32_Service Represents a service on a computer running on a Microsoft Windows
operating system. A service application conforms to the interface rules
of the Service Control Manager (SCM), and can be started by a user
automatically at system start through the Services Control Panel utility,
or by an application that uses the service functions included in the Win-
dows API. Services can start when there are no users logged on to the
computer.

Win32_Share Represents a shared resource on a Windows system. This may be a disk
drive, printer, interprocess communication, or other shareable device.

Win32_SoftwareElement Represents a software element, part of a software feature (a distinct sub-
set of a product, which may contain one or more elements). Each soft-
ware element is defined in a Win32_SoftwareElement instance,
and the association between a feature and its Win32_
SoftwareFeature instance is defined in the Win32_
SoftwareFeatureSoftwareElements association class. For
information about support or requirements for installation on a specific
operating system, visit http://msdn.microsoft.com and search for “Oper-
ating System Availability of WMI Components.”

Win32_SoftwareFeature Represents a distinct subset of a product that consists of one or more
software elements. Each software element is defined in a Win32_
SoftwareElement instance, and the association between a feature
and its Win32_SoftwareFeature instance is defined in the
Win32_SoftwareFeatureSoftwareElements association
class. For information about support or requirements for installation on
a specific operating system, visit http://msdn.microsoft.com and search
for “Operating System Availability of WMI Components.”

WIN32_SoundDevice Represents the properties of a sound device on a Windows computer
system.

Win32_StartupCommand Represents a command that runs automatically when a user logs on to
the computer system.

Win32_SystemAccount Represents a system account. The system account is used by the oper-
ating system and services that run under Windows NT. There are many
services and processes within Windows NT that need the capability to
log on internally, for example, during a Windows NT installation. The
system account was designed for that purpose.

Win32_SystemDriver Represents the system driver for a base service.

Win32_SystemEnclosure Represents the properties that are associated with a physical system
enclosure.

Win32_SystemSlot Represents physical connection points including ports, motherboard
slots and peripherals, and proprietary connection points.

Win32_TapeDrive Represents a tape drive on a Windows computer. Tape drives are pri-
marily distinguished by the fact that they can be accessed only
sequentially.

Win32_TemperatureProbe Represents the properties of a temperature sensor (e.g., electronic
thermometer).

Table F-2. Selected WMI Classes (continued)

Class Description

WMI Reference | 515

Win32_TimeZone Represents the time zone information for a Windows system, which
includes changes required for the Daylight Saving Time transition.

Win32_UninterruptiblePowerSupply Represents the capabilities and management capacity of an uninter-
ruptible power supply (UPS). Beginning with Windows Vista, this class
is obsolete and not available because the UPS service is no longer avail-
able. This service worked with serially attached UPS devices, not USB
devices.

Windows Server 2003 and Windows XP: This class is available, but not
usable because the UPS service fails. Windows Server 2003, Windows
XP, Windows 2000, and Windows NT 4.0: This class is available and
implemented.

Win32_UserAccount Contains information about a user account on a computer running on a
Windows operating system.

Because both the Name and Domain are key properties, enumerating
Win32_UserAccount on a large network can affect performance
negatively. Calling GetObject or querying for a specific instance has
less impact.

Win32_VoltageProbe Represents the properties of a voltage sensor (electronic voltmeter).

Win32_VolumeQuotaSetting Relates disk quota settings with a specific disk volume. Windows 2000/
NT: This class is not available.

Win32_WMISetting Contains the operational parameters for the WMI service. This class can
only have one instance, which always exists for each Windows system
and cannot be deleted. Additional instances cannot be created.

Table F-2. Selected WMI Classes (continued)

Class Description

516

Appendix G APPENDIX G

Selected COM Objects and Their Uses7

As an extensibility and administration interface, many applications expose useful
functionality through COM objects. While PowerShell handles many of these tasks
directly, many COM objects still provide significant value.

Table G-1 lists a selection of the COM objects most useful to system administrators.

Table G-1. COM identifiers and descriptions

Identifier Description

Access.Application Allows for interaction and automation of Microsoft Access.

Agent.Control Allows for the control of Microsoft Agent 3D animated characters.

AutoItX3.Control (nondefault) Provides access to Windows Automation via the AutoIt
administration tool.

CEnroll.CEnroll Provides access to certificate enrollment services.

CertificateAuthority.Request Provides access to a request to a certificate authority.

COMAdmin.COMAdminCatalog Provides access to and management of the Windows COM+ catalog.

Excel.Application Allows for interaction and automation of Microsoft Excel.

Excel.Sheet Allows for interaction with Microsoft Excel worksheets.

HNetCfg.FwMgr Provides access to the management functionality of the Windows Firewall.

HNetCfg.HNetShare Provides access to the management functionality of Windows Connection
Sharing.

HTMLFile Allows for interaction and authoring of a new Internet Explorer document.

InfoPath.Application Allows for interaction and automation of Microsoft InfoPath.

InternetExplorer.Application Allows for interaction and automation of Microsoft Internet Explorer.

IXSSO.Query Allows for interaction with Microsoft Index Server.

IXSSO.Util Provides access to utilities used along with the IXSSO.Query object.

LegitCheckControl.LegitCheck Provide access to information about Windows Genuine Advantage status on
the current computer.

MakeCab.MakeCab Provides functionality to create and manage cabinet
(.cab) files.

Selected COM Objects and Their Uses | 517

MAPI.Session Provides access to a MAPI (Messaging Application Programming Interface)
session, such as folders, messages, and the address book.

Messenger.MessengerApp Allows for interaction and automation of Messenger.

Microsoft.FeedsManager Allows for interaction with the Microsoft RSS feed platform.

Microsoft.ISAdm Provides management of Microsoft Index Server.

Microsoft.Update.AutoUpdate Provides management of the auto update schedule for Microsoft Update.

Microsoft.Update.Installer Allows for installation of updates from Microsoft Update.

Microsoft.Update.Searcher Provides search functionality for updates from Microsoft Update.

Microsoft.Update.Session Provides access to local information about Microsoft Update history.

Microsoft.Update.SystemInfo Provides access to information related to Microsoft Update for the current
system.

MMC20.Application Allows for interaction and automation of Microsoft Management Console
(MMC).

MSScriptControl.ScriptControl Allows for the evaluation and control of WSH scripts.

Msxml2.XSLTemplate Allows for processing of XSL transforms.

Outlook.Application Allows for interaction and automation of your email, calendar, contacts,
tasks, and more through Microsoft Outlook.

OutlookExpress.MessageList Allows for interaction and automation of your email through Microsoft Out-
look Express.

PowerPoint.Application Allows for interaction and automation of Microsoft PowerPoint.

Publisher.Application Allows for interaction and automation of Microsoft Publisher.

RDS.DataSpace Provides access to proxies of Remote DataSpace business objects.

SAPI.SpVoice Provides access to the Microsoft Speech API.

Scripting.FileSystemObject Provides access to the computer’s filesystem. Most functionality is available
more directly through PowerShell, or through PowerShell’s support for the .
NET Framework.

Scripting.Signer Provides management of digital signatures on WSH files.

Scriptlet.TypeLib Allows the dynamic creation of scripting type library
(.tlb) files.

ScriptPW.Password Allows for the masked input of plain-text passwords. When possible, you
should avoid this in preference of the Read-Host cmdlet with the –
AsSecureString parameter.

SharePoint.OpenDocuments Allows for interaction with Microsoft SharePoint Services.

Shell.Application Provides access to aspects of the Windows Explorer Shell application, such as
managing windows, files and folders, and the current session.

Shell.LocalMachine Provides access to information about the current machine related to the
Windows shell.

Shell.User Provides access to aspects of the current user’s Windows session and profile.

SQLDMO.SQLServer Provides access to the management functionality of Microsoft SQL Server.

Table G-1. COM identifiers and descriptions (continued)

Identifier Description

518 | Appendix G: Selected COM Objects and Their Uses

Vim.Application (nondefault) Allows for interaction and automation of the VIM editor.

WIA.CommonDialog Provides access to image capture through the Windows Image Acquisition
facilities.

WMPlayer.OCX Allows for interaction and automation of Windows Media Player.

Word.Application Allows for interaction and automation of Microsoft Word.

Word.Document Allows for interaction with Microsoft Word documents.

WScript.Network Provides access to aspects of a networked Windows environment, such as
printers, network drives, as well as computer and domain information.

WScript.Shell Provides access to aspects of the Windows Shell, such as applications, short-
cuts, environment variables, the registry, and operating environment.

WSHController Allows the execution of WSH scripts on remote computers.

Table G-1. COM identifiers and descriptions (continued)

Identifier Description

519

Appendix H APPENDIX H

.NET String Formatting8

String Formatting Syntax
The format string supported by the format (-f) operator is a string that contains for-
mat items. Each format item takes the form of:

{index[,alignment][:formatString]}

<index> represents the zero-based index of the item in the object array following the
format operator.

<alignment> is optional and represents the alignment of the item. A positive number
aligns the item to the right of a field of the specified width. A negative number aligns
the item to the left of a field of the specified width.

<formatString> is optional and formats the item using that type’s specific format
string syntax (as laid out in Tables H-1 and H-2).

Standard Numeric Format Strings
Table H-1 lists the standard numeric format strings. All format specifiers may be fol-
lowed by a number between 0 and 99 to control the precision of the formatting.

Table H-1. Standard numeric format strings

Format specifier Name Description Example

C or c Currency A currency amount. PS >"{0:C}" -f 1.23
$1.23

D or d Decimal A decimal amount (for integral types).
The precision specifier controls the
minimum number of digits in the
result.

PS >"{0:D4}" -f 2
0002

E or e Scientific Scientific (exponential) notation. The
precision specifier controls the number
of digits past the decimal point.

PS >"{0:E3}" –f [Math]::Pi
3.142E+000

520 | Appendix H: .NET String Formatting

Custom Numeric Format Strings
You may use custom numeric strings, listed in Table H-2, to format numbers in ways
not supported by the standard format strings.

F or f Fixed-
point

Fixed point notation. The precision
specifier controls the number of digits
past the decimal point.

PS >"{0:F3}" –f [Math]::Pi
3.142

G or g General The most compact representation
(between fixed-point and scientific) of
the number. The precision specifier con-
trols the number of significant digits.

PS >"{0:G3}" -f [Math]::Pi
3.14
PS >"{0:G3}" -f 1mb
1.05E+06

N or n Number The human readable form of the num-
ber, which includes separators
between number groups. The precision
specifier controls the number of digits
past the decimal point.

PS >"{0:N4}" -f 1mb
1,048,576.0000

P or p Percent The number (generally between 0 and
1) represented as a percentage. The
precision specifier controls the number
of digits past the decimal point.

PS >"{0:P4}" -f 0.67
67.0000 %

R or r Round-
trip

The Single or Double number format-
ted with a precision that guarantees
the string (when parsed) will result in
the original number again.

PS >"{0:R}" -f (1mb/2.0)
524288
PS >"{0:R}" -f (1mb/9.0)
116508.44444444444

X or x Hexadeci-
mal

The number converted to a string of
hexadecimal digits. The case of the
specifier controls the case of the result-
ing hexadecimal digits. The precision
specifier controls the minimum num-
ber of digits in the resulting string.

PS >"{0:X4}" -f 1324
052C

Table H-2. Custom numeric format strings

Format
Specifier Name Description Example

0 Zero place-
holder

Specifies the precision and width of a
number string. Zeroes not matched by
digits in the original number are output
as zeroes.

PS >"{0:00.0}" -f 4.12341234
04.1

Digit place-
holder

Specifies the precision and width of a
number string. # symbols not matched
by digits in the input number are not
output.

PS >"{0:##.#}" -f 4.12341234
4.1

Table H-1. Standard numeric format strings (continued)

Format specifier Name Description Example

Custom Numeric Format Strings | 521

. Decimal point Determines the location of the decimal
separator.

PS >"{0:##.#}" -f 4.12341234
4.1

, Thousands
separator

When placed between a zero or digit
placeholder before the decimal point in a
formatting string, adds the separator
character between number groups.

PS >"{0:#,#.#}" -f 1234.121234
1,234.1

, Number
scaling

When placed before the literal (or
implicit) decimal point in a formatting
string, divides the input by 1000. You
may apply this format specifier more
than once.

PS >"{0:##,,.000}" -f 1048576
1.049

% Percentage
placeholder

Multiplies the input by 100, and inserts
the percent sign where shown in the for-
mat specifier.

PS >"{0:%##.000}" -f .68
%68.000

E0
E+0
E-0
e0
e+0
e-0

Scientific
notation

Displays the input in scientific notation.
The number of zeroes that follow the E
define the minimum length of the expo-
nent field.

PS >"{0:##.#E000}" -f 2.71828
27.2E-001

'text'
"text"

Literal string Inserts the provided text literally into the
output without affecting formatting.

PS >"{0:#.00'##'}" -f 2.71828
2.72##

; Section
separator

Allows for conditional formatting.

If your format specifier contains no sec-
tion separators, then the formatting
statement applies to all input.

If your format specifier contains one sep-
arator (creating two sections), then the
first section applies to positive numbers
and zero. The second section applies to
negative numbers.

If your format specifier contains two sep-
arators (creating three sections), then the
sections apply to positive numbers, nega-
tive numbers, and zero.

PS >"{0:POS;NEG;ZERO}" -f -14
NEG

Other Other
character

Inserts the provided text literally into the
output without affecting formatting.

PS >"{0:$## Please}" -f 14
$14 Please

Table H-2. Custom numeric format strings (continued)

Format
Specifier Name Description Example

522

Appendix IAPPENDIX I

.NET DateTime Formatting 9

DateTime format strings convert a DateTime object to one of several standard for-
mats, as listed in Table I-1.

Table I-1. Standard DateTime format strings

Format
specifier Name Description Example

d Short date The culture’s short date
format.

PS >"{0:d}" -f [DateTime] "01/23/4567"
1/23/4567

D Long date The culture’s long date
format.

PS >"{0:D}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567

f Full date/short
time

Combines the long date
and short time format
patterns.

PS >"{0:f}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00 AM

F Full date/long
time

Combines the long date
and long time format
patterns.

PS >"{0:F}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00:00 AM

g General date/
short time

Combines the short date
and short time format
patterns.

PS >"{0:g}" -f [DateTime] "01/23/4567"
1/23/4567 12:00 AM

G General date/
long time

Combines the short date
and long time format
patterns.

PS >"{0:G}" -f [DateTime] "01/23/4567"
1/23/4567 12:00:00 AM

M or m Month day The culture’sMonthDay
format.

PS >"{0:M}" -f [DateTime] "01/23/4567"
January 23

o Round-trip date/
time

The date formatted with
a pattern that guaran-
tees the string (when
parsed) will result in the
original DateTime again.

PS >"{0:o}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00.0000000

R or r RFC1123 The standard RFC1123
format pattern.

PS >"{0:R}" -f [DateTime] "01/23/4567"
Fri, 23 Jan 4567 00:00:00 GMT

Custom DateTime Format Strings | 523

Custom DateTime Format Strings
You may use custom DateTime format strings, listed in Table I-2, to format dates in
ways not supported by the standard format strings.

Single-character format specifiers are interpreted as a standard
DateTime formatting string unless they are used with other formatting
specifiers.

--

s Sortable Sortable format pattern.
Conforms to ISO 8601,
and provides output
suitable for sorting.

PS >"{0:s}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00

t Short time The culture’s
ShortTime format.

PS >"{0:t}" -f [DateTime] "01/23/4567"
12:00 AM

T Long time The culture’sLongTime
format.

PS >"{0:T}" -f [DateTime] "01/23/4567"
12:00:00 AM

u Universal sortable The culture’s
UniversalSortable
DateTime format
applied to the UTC
equivalent of the input.

PS >"{0:u}" -f [DateTime] "01/23/4567"
4567-01-23 00:00:00Z

U Universal The culture’s
FullDateTime format
applied to the UTC
equivalent of the input.

PS >"{0:U}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 8:00:00 AM

Y or y Year month The culture’s
YearMonth format.

PS >"{0:Y}" -f [DateTime] "01/23/4567"
January, 4567

Table I-2. Custom DateTime format strings

Format
specifier Description Example

d Day of the month as a number between 1
and 31. Represents single-digit days without
a leading zero.

PS >"{0:d dd ddd dddd}" -f
 [DateTime] "01/02/4567"
2 02 Fri Friday

dd Day of the month as a number between 1
and 31. Represents single-digit days with a
leading zero.

PS >"{0:d dd ddd dddd}" -f
 [DateTime] "01/02/4567"
2 02 Fri Friday

ddd Abbreviated name of the day of week. PS >"{0:d dd ddd dddd}" -f
 [DateTime] "01/02/4567"
2 02 Fri Friday

Table I-1. Standard DateTime format strings (continued)

Format
specifier Name Description Example

524 | Appendix I: .NET DateTime Formatting

dddd Full name of the day of the week. PS >"{0:d dd ddd dddd}" -f
 [DateTime] "01/02/4567"
2 02 Fri Friday

f Most significant digit of the seconds fraction
(milliseconds).

PS >"{0:f ff fff ffff}" –f
 [DateTime] "01/02/4567"
0 00 000 0000

ff Two most significant digits of the seconds
fraction (milliseconds).

PS >"{0:f ff fff ffff}" –f
 [DateTime] "01/02/4567"
0 00 000 0000

fff Three most significant digits of the seconds
fraction (milliseconds).

PS >"{0:f ff fff ffff}" –f
 [DateTime] "01/02/4567"
0 00 000 0000

ffff Four most significant digits of the seconds
fraction (milliseconds).

PS >"{0:f ff fff ffff}" –f
 [DateTime] "01/02/4567"
0 00 000 0000

fffff Five most significant digits of the seconds
fraction (milliseconds).

PS >"{0:fffff ffffff fffffff}" –f
 [DateTime] "01/02/4567"
00000 000000 0000000

ffffff Six most significant digits of the seconds
fraction (milliseconds).

PS >"{0:fffff ffffff fffffff}" –f
 [DateTime] "01/02/4567"
00000 000000 0000000

fffffff Seven most significant digits of the seconds
fraction (milliseconds).

PS >"{0:fffff ffffff fffffff}" –f
 [DateTime] "01/02/4567"
00000 000000 0000000

F Most significant digit of the seconds fraction
(milliseconds). Displays nothing if the num-
ber is zero.

PS >"{0:F FF FFF FFFF}" –f
 [DateTime]::Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" –f
 [DateTime] "01/02/4567"
| |

FF Two most significant digits of the seconds
fraction (milliseconds). Displays nothing if
the number is zero.

PS >"{0:F FF FFF FFFF}" –f
 [DateTime]::Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" –f
 [DateTime] "01/02/4567"
| |

FFF Three most significant digits of the seconds
fraction (milliseconds). Displays nothing if
the number is zero.

PS >"{0:F FF FFF FFFF}" –f
 [DateTime]::Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" –f
 [DateTime] "01/02/4567"
| |

Table I-2. Custom DateTime format strings (continued)

Format
specifier Description Example

Custom DateTime Format Strings | 525

FFFF Four most significant digits of the seconds
fraction (milliseconds). Displays nothing if
the number is zero.

PS >"{0:F FF FFF FFFF}" –f
 [DateTime]::Now
6 66 669 6696

PS >"{0:|F FF FFF FFFF|}" –f
 [DateTime] "01/02/4567"
| |

FFFFF Five most significant digits of the seconds
fraction (milliseconds). Displays nothing if
the number is zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" –f
 [DateTime]::Now
1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" –f
 [DateTime] "01/02/4567"
| |

FFFFFF Six most significant digits of the seconds
fraction (milliseconds). Displays nothing if
the number is zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" –f
 [DateTime]::Now
1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" –f
 [DateTime] "01/02/4567"
| |

FFFFFFF Seven most significant digits of the seconds
fraction (milliseconds). Displays nothing if
the number is zero.

PS >"{0:FFFFF FFFFFF FFFFFFF}" –f
 [DateTime]::Now
1071 107106 1071068

PS >"{0:|FFFFF FFFFFF FFFFFFF|}" –f
 [DateTime] "01/02/4567"
| |

%g or gg Era (i.e., A.D). PS >"{0:gg}" -f [DateTime]
 "01/02/4567"
A.D.

%h Hours, as a number between 1 and 12. Sin-
gle digits do not include a leading zero.

PS >"{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

hh Hours, as a number between 01 and 12. Sin-
gle digits include a leading zero. Note: This is
interpreted as a standard DateTime format-
ting string unless used with other formatting
specifiers.

PS >"{0:hh}" -f
 [DateTime] "01/02/4567 4:00pm"
04

%H Hours, as a number between 0 and 23. Sin-
gle digits do not include a leading zero.

PS >"{0:%H}" -f
 [DateTime] "01/02/4567 4:00pm"
16

HH Hours, as a number between 00 and 23. Sin-
gle digits include a leading zero.

PS >"{0:HH}" -f
 [DateTime] "01/02/4567 4:00am"
04

K DateTime.Kind specifier that corre-
sponds to the kind (i.e., Local, Utc, or
Unspecified) of input date.

PS >"{0: K}" -f
 [DateTime]::Now.ToUniversalTime()
 Z

Table I-2. Custom DateTime format strings (continued)

Format
specifier Description Example

526 | Appendix I: .NET DateTime Formatting

M Minute, as a number between 0 and 59. Sin-
gle digits do not include a leading zero.

PS >"{0: m}" -f [DateTime]::Now
 7

mm Minute, as a number between 00 and 59.
Single digits include a leading zero.

PS >"{0:mm}" -f [DateTime]::Now
08

M Month, as a number between 1 and 12. Sin-
gle digits do not include a leading zero.

PS >"{0:M MM MMM MMMM}" –f
 [DateTime] "01/02/4567"
1 01 Jan January

MM Month, as a number between 01 and 12. Sin-
gle digits include a leading zero.

PS >"{0:M MM MMM MMMM}" –f
 [DateTime] "01/02/4567"
1 01 Jan January

MMM Abbreviated month name. PS >"{0:M MM MMM MMMM}" –f
 [DateTime] "01/02/4567"
1 01 Jan January

MMMM Full month name. PS >"{0:M MM MMM MMMM}" –f
 [DateTime] "01/02/4567"
1 01 Jan January

s Seconds, as a number between 0 and 59.
Single digits do not include a leading zero.

PS > "{0:s ss t tt}" –f
 [DateTime]::Now
3 03 A AM

ss Seconds, as a number between 00 and 59.
Single digits include a leading zero.

PS > "{0:s ss t tt}" –f
 [DateTime]::Now
3 03 A AM

T First character of the a.m./p.m. designator. PS > "{0:s ss t tt}" –f
 [DateTime]::Now
3 03 A AM

tt a.m./p.m. designator. PS > "{0:s ss t tt}" –f
 [DateTime]::Now
3 03 A AM

Y Year, in (at most) 2 digits. PS >"{0:y yy yyy yyyy yyyyy}" –f
 [DateTime] "01/02/4567"
67 67 4567 4567 04567

yyy Year, in (at most) 3 digits. PS >"{0:y yy yyy yyyy yyyyy}" –f
 [DateTime] "01/02/4567"
67 67 4567 4567 04567

yyyy Year, in (at most) 4 digits. PS >"{0:y yy yyy yyyy yyyyy}" –f
 [DateTime] "01/02/4567"
67 67 4567 4567 04567

yyyyy Year, in (at most) 5 digits. PS >"{0:y yy yyy yyyy yyyyy}" –f
 [DateTime] "01/02/4567"
67 67 4567 4567 04567

Z Signed time zone offset from GMT. Does not
include a leading zero.

PS >"{0:z zz zzz}" –f [DateTime]::Now
-7 -07 -07:00

zz Signed time zone offset from GMT. Includes
a leading zero.

PS >"{0:z zz zzz}" –f [DateTime]::Now
-7 -07 -07:00

zzz Signed time zone offset from GMT, mea-
sured in hours and minutes.

PS >"{0:z zz zzz}" –f [DateTime]::Now
-7 -07 -07:00

Table I-2. Custom DateTime format strings (continued)

Format
specifier Description Example

Custom DateTime Format Strings | 527

: Time separator. PS > "{0:y/m/d h:m:s}" –f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

/ Date separator. PS > "{0:y/m/d h:m:s}" –f
 [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

"text"
'text'

Inserts the provided text literally into the
output without affecting formatting.

PS >"{0:'Day: 'dddd}" –f
 [DateTime]::Now
Day: Monday

%c Syntax allowing for single-character custom
formatting specifiers. The % sign is not
added to the output.

PS >"{0:%h}" -f
 [DateTime] "01/02/4567 4:00pm"
4

Other Inserts the provided text literally into the
output without affecting formatting.

PS >"{0:dddd!}" –f [DateTime]::Now
Monday!

Table I-2. Custom DateTime format strings (continued)

Format
specifier Description Example

529

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
" " (double quotes), 96
$ (dollar sign), 8
$$, 496
$? (dollar sign, question mark), 33, 496
$^, 496
$_, 50, 55, 475, 496
$args, 84, 186, 187, 474, 496
$confirmPreference, 496
$consoleFilename, 496
$currentlyExecutingCommand, 496
$debugPreference, 46, 496
$env:SystemRoot, 98
$env:variable name, 64
$error, 44, 226, 496
$errorActionPreference, 228, 496
$errorView, 227, 496
$executionContext, 320, 497
$false, 34, 497
$foreach, 497
$formatEnumerationLimit, 497
$GLOBAL:, 254

(see also global scope)
$home, 497
$host, 497
$host.PrivateData.Debug*, 46
$host.PrivateData.Progress*, 46
$host.PrivateData.Verbose*, 46
$host.UI.RawUI.ReadKey(), 211
$input, 188, 475, 497
$lastExitCode, 33, 476, 497
$logCommandHealthEvent, 497
$logCommandLifecycleEvent, 497

$logEngineHealthEvent, 497
$logEngineLifecycleEvent, 497
$logProviderHealthEvent, 497
$logProviderLifecycleEvent, 497
$maximumAliasCount, 497
$maximumDriveCount, 497
$maximumErrorCount, 497
$maximumFunctionCount, 497
$maximumHistoryCount, 38, 497
$maximumVariableCount, 497
$message, 283
$myInvocation, 243, 476, 497
$myInvocation.InvocationName, 246
$myInvocation.MyCommand, 243
$myInvocation.ScriptName, 247
$nestedPromptLevel, 497
$null, 62, 98, 497
$ofs, 497
$outputEncoding, 498
$pid, 498
$profile, 23, 25, 486, 498
$progressPreference, 46, 498
$psHome, 498
$pwd, 320, 498
$this, 85
$true, 85
$VerbosePreference, 46, 483
%errorlevel%, 33
& (ampersand, invoke operator), 20, 29, 181
() (parentheses), 71
* (asterisk), 25
*.Format.ps1xml, 481
*-Item, 326
+ (addition operator), 201

530 | Index

, (comma, list operator), 195
. (dot) (see also dot-source), 67
./ (dot, forward slash), 20
./Program.exe syntax, 21
.NET

calling, 265
Class header, 58
classes, 502–508
documentation, 79, 469
advanced features, 262
Framework Class Library (FCL), xviii
generic objects, 73–74
instances, 468
method, 67, 468
names, 67
objects, 67, 71
properties, 67, 68, 70, 468
string formats, 519
WMI advanced tasks, 261

.NET classes and their uses, 502

.NET DateTime formatting, 522

.ps1, 176, 289, 473

.ps1xml, 289

.psc1 file extension, 48

.tmp (temporary file), 142
:: (colons), static member access, 68
<formatString>, 519
@ (at sign), list evaluation syntax, 97, 197,

449
@() (list evaluation syntax), 189
[int] (integer cast), 449
\ (backslash character), 98
` (back-tick), escape character (see also

escape sequences), 98, 447
{ } double brackets (see also script

block), 50
| (pipeline), 9, 49
" (quotes), 20
' (single quote), 20
0x prefix, 123, 448

A
A: through Z:, 314
accelerators, 211, 257, 261
Access a .NET SDK library, 276
Access arguments of a script, function, or

script block, 185
Access elements of an array, 198
Access environment variables, 63
Access event logs of a remote machine, 371
Access features of the host’s user

interface, 221

Access information about your command’s
invocation, 242

Access information in an XML file, 147
Access pipeline input, 188
Access services on a remote machine, 383
Access user and machine certificates, 303
Access Windows Management

Instrumentation data, 255
Access Windows performance counters, 270
ACL (access control list)

misconfigurations, 328
modification, 329
registry keys, 346–348

Active Directory, 385–404
objectClass, 400

ADAM (Active Directory Application Mode)
create a test instance, 386
installation, 386
test scripts on a local installation, 385

Adapters static IP addresses, 422–423
Add a graphical user interface to your

script, 223
Add a pause or delay, 93
Add a site to an Internet Explorer security

zone, 341
Add a user to a security or distribution

group, 399
Add custom methods and properties to

objects, 80
Add custom methods and properties to

types, 82
Add extended file properties to files, 330
Add inline C# to your PowerShell script, 273
Add PowerShell scripting to your own

program, 283
Add/remove administrative templates, 293
Add/remove programs, 410
Add-DistributionGroupMember, 431
Add-ExtendedFileProperties.ps1, 331
Add-History, 39
addition operator (+), 201, 454
Add-Member, 80, 82, 319, 471
Add-PsSnapin SnapinIdentifier, 47
ad hoc script development, 12
Adjust script flow using conditional

statements, 89
Adjust your window size, 484
Administrative numeric constants, 448
Administrative templates, 293
Administrative tools, 294
Administrator account, 413

Index | 531

ADSI (Active Directory Service
Interfaces), 13

ADSIEdit MMC, 390
COM libraries, xviii

[adsi], 387, 389, 395, 397
Advanced class features, 262
Advanced query feature, 262
aliases

Alias:, 311
AliasProperty, 81, 85, 471
common commands, 36
defining, 23
registry keys navigation, 337
scope, 67
structured commands, 7

alignment (string formatting), 519
Allow only

all administrators to manage Trusted
Publishers, 295

enterprise administrators to manage
Trusted Publishers, 295

AllScope, variable option, 66
AllSigned, execution policy, 288, 294
AllUsers
AllUsersDesktop, 249
AllUsersPrograms, 249
AllUsersStartMenu, 249
AllUsersStartup, 249
Alt key, 211
ampersand, invoke operator (&), 20, 29
Analyze a script’s performance profile, 234
-and operator, 455
angles, 119
APIs

calls, 271–273
data protection, 297, 302
errors, 479
output, verbose, 483
Win32, 414

-Append parameter, 41
AppendChild(), 152
Apropos, 28
Archive, 123
args, 186
argument array, 474
arguments, 185
arithmetic operators, 453
ArrayList, 73, 75, 183, 205
arrays

access, 450
advanced tasks, 205
arguments, 474

associative, 198, 206, 451
combine, 201
create, 195
data, adding to the end, 201
defining, 449
elements, 198, 203, 449
multidimensional (jagged), 197, 450
ranges, 451
searches, 200, 202, 204
slicing, 451
sort, 200, 204
strongly typed, 449
(see also lists)

arrays, search, 202
-as operator, 458
-AsPlainText, 297
-AsSecureString, 210, 296
assembly, 470
Assign a static IP address, 421
Assignment, 455
asterisk (*), 25
at sign (@) (list evaluation syntax), 97
attrib.exe, 312
attributes

elements, 149
file, 124
flags, 124
group, 396
system update, 312

Authentication, advanced query feature, 262
Authenticode

infrastructure, 290
verification, 295

AuthenticodeSignature, 295
-Auto flag, 43
Automate data-intensive tasks, 56
automate programs, 266
Automate programs using COM scripting

interfaces, 266
Automate wizard-guided tasks, 427
automatic variables, 496
AvailableFreeSpace, 84
Awk, 110

B
Back up an event log, 369
backslash character (\), 98
back-tick (`), escape character, 98, 447

 (see also escape sequences)
-band operator, 126, 456
banker’s rounding, 118
Base64 encoded command, 29

532 | Index

batch files, 30, 241
begin keyword, 190, 475
binary

BinaryReader, 141
management, 139
numbers, 123
operators, 88
parse, 139
representation, 128

binary file, searching, 136
binary operators, 456
bit flags, 123
-bnot operator, 457
Booleans, 446
-bor operator, 456
break statement, 464, 466
buffer size, 35
-bxor operator, 456

C
C#, Inline, 278
cacls.exe, 330
calculated property, 159
calculations, 120

complex, 181
properties, 319
(see also operations)

Calling methods on a class, 266
Calling methods on an instance, 265
calls

APIs, 271
methods, 265

cancel, 485
capitalization rules, debug solutions, 219
capitalization, writing, 219
Capturing output, 482
cast, 75
CategoryView, 44, 227
cd command, 6
certificates (see digital certificates)
characters

special, 98, 317
whitespace, 107

child scopes, 66
CIM_Printer, 414
classes, 67

advanced features, 262
security, 297
WebClient, 161
(see also .NET)

Clear or remove a file, 311
Clear-Content, 311

cmd.exe, 20
cmdlet, compile and run an example, 285

(see also commands)
Cmdlet keywords in scripts, 475
cmdlet, creation, 279
CodeMethod, 81, 472
CodeProperty, 81, 471
code-signing certificates, 289, 293
Collect detailed traces of a script or

command, 234
colons (::), 68
COM

interfaces, 267, 471
methods and properties, 76
script, 14
script interfaces, 266
system administrators, 516–518

COM objects and their uses, 516
Combine two arrays, 201
comma, list operator (,), 195
command shell, 434
command-line utilities, 405
commands

CommandType, 243
defining, 443
duration of, 34
error output, 44
export as Web pages, 170
help, 26
history, 484
locate

current, 320
past, 24

memory usage, display, 373
output

comparisons of two commands, 358
storage, 39

status of last, 33
structured, 279
Trace-Command, 483

Commands and expressions, 443
CommandType, 244
comments, 444

multiline. 97
Common customization points, 484
common folders, 248
-ComObject, 76
Compare the output of two commands, 358
Compare-Object, 358
Compare-Property, 52
Compare-Property.ps1, 52
comparison operators, 51, 88, 359, 458, 461

Index | 533

Complexity of user input and file
content, 218

ComputerName, 58
conditional statements, 460
-Confirm parameters, 10
Connect-WebService, 166
Connect-WebService.ps1, 167
Console settings, 484
console window

buffer size, 36
copying and pasting, with the mouse, 36
customization, 35, 484
foreground and background color, 36
history management, 38
hotkeys, 39
snapins, 48

[Console]::ReadKey(), 211
constructors, 71, 79, 470
-contains operator, 200, 460
content, 311
Continue ErrorAction preference, 479
continue statement, 46, 466
Continue verbose preference, 483
Control access and scope of variables and

other items, 65
Convert a string to upper/lowercase, 106
Convert a VBScript WMI script to

PowerShell, 263
Convert numbers between bases, 128
Convert text streams to objects, 110
[Convert]::ToInt32(), 123, 128
[Convert]::ToString(), 123, 128
ConvertFrom-SecureString, 297, 302
converting numbers, 449
Convert-TextObject, 110–114, 136–139, 172
Convert-TextObject.ps1, 110
ConvertTo-Html, 170
ConvertTo-SecureString, 297, 302
cooked input mode, 36
Copy-Item, 45, 156
cosine, 119
counted for loop, 92
Create a directory, 324
Create a filesystem hard link, 332
Create a hashtable or associative array, 206
Create a jagged or multidimensional

array, 197
Create a multiline or formatted string, 97
Create a registry key value, 339
Create a security or distribution group, 395
Create a self-signed certificate, 291
Create a string, 95

Create a temporary file, 141
Create a user account, 390
Create a ZIP archive, 334
Create an array or list of items, 195
Create an instance of a .NET object, 71
Create an organizational unit, 388
Create instances of generic objects, 73
Create or remove an event log, 369
Create your own PowerShell cmdlet, 279
Creating instances of types, 470
Creating large text reports, 115
-creplace, 144
CSV

account information, 391
automating data intensive tasks, 56
files, 57
plain strings, 157

Ctrl key, 211
cube roots, 120
culture-aware script settings, 217
Custom DateTime format strings, 523
Custom formatting files, 481
Custom numeric format strings, 520
custom type extension files, 472
Customize your shell, profile, and

prompt, 22
Cyrillic, 144

D
data

access instrumentation, 255–257
collection, 264
Data Protection API, 302
generating large amounts of, 114
import and export structured, 153
intensive tasks, 56
numeric, 448
pipelines, 114
retrieval of hidden, 313
source

navigation, 336
queries, 267–269

SQL servers, 267
streaming, 114
(see also files)

date and time
constants, 109
DateTime

calendar arithmetic, 310
calling, 79
customization, 523–527
format, 109, 522

534 | Index

date and time (continued)
generic objects, 73
Ticks property, 122

file modification searches, 310
format conversion, 522–523
internationalization problems, 109
number format, 218
system, 32

Date, time, and number formats, 218
-Debug, 46
Debug a script, 231
debugging solutions, 46, 231–233, 482
decimal numbers, 128, 449
declaration, 477
default parameters, 315
defrag.exe, 413
defragmentation, 412
delay command, 93
delete file, 311
-Delimiter, 138
delimiter, file, 133
Desktop, 249
Determine properties available to WMI

filters, 257
Determine the current location, 320
Determine the differences between two

files, 359
Determine whether a hotfix is installed, 417
Determine whether an array contains an

item, 200
DHCP leases, 420
diagnostic information, 234
diff, 358, 359
diff.exe, 359
digital certificates

access, 303
self-signed, 291
store, 15, 304

digital signatures, 288, 295
dir command, 6
directories

creation, 324
file searches, 313
moving, 327
removal, 324
rename, 325
running commands, 20
VMImages, 435

DirectoryName, 315
Disable-Rule, 438
Discover registry settings for programs, 354

discovery commands, 10
disk

credential passwords, 301
space, 318
usage statistics, 319

Display a menu to the user, 211
Display messages and output to the

user, 213
DisplayName, 410, 436
distribution groups

creation, 395
CSV data and bulk, 396
listing members, 401, 431
management, 431
property

lists, 397
modification, 399

searches, 396
users, 399, 431

division, 118, 454
do … until statement, 465
do … while statement, 92, 465
dollar hook (see $? [dollar sign, question

mark])
DOS-style file manipulation commands, 5
dot, forward slash (./), 20
dot-source, 185, 254
dot-sourcing scripts, 473
double brackets ({ }), 50

(see also script block)
double quotes (" "), 96
Download a file from the Internet, 160
Download a web page from the Internet, 161
download time, 127
DownloadFile(), WebClient method, 160
DownloadString(), WebClient method, 161
drives, 311

access, 66
free space, 84
removal, 85
scope, 67
standard, 314
syntax, 241

E
e base, 120
Easily import and export your structured

data, 153
EKU (Enhanced Key Usage), 304
else statement, 89, 460
elseIf statement, 89, 460

Index | 535

email
information retrieval and

modification, 430
mailboxes, 430
management, 430
sending, 170
transport rules, 431

Enable or disable rules, 438
Enable or disable the Windows Firewall, 408
Enable scripting through an execution

policy, 287
EnablePrivileges, 262
enablers, xviii
Enable-Rule, 438
Encarta, 162
encoded files, 144
EncodedCommand, 29
-Encoding, 144
Encrypted file attribute, 124

(see also SecureString)
end keyword, 190
end of file information, 41
End(), 107
Enhanced security configuration, 289
[Enum]::GetValues(), 248
enumerated constants, 249
enumerator, 188
env:, 63, 241, 312
environment

global, 254
libraries, xviii
modification, 240
providers, 63, 241
values, 241
variables, 30, 63, 240
WSH scripters, xviii
(see also variables)

[Environment]::GetFolderPath(), 248
[Environment]::SetEnvironmentVariable(),

241
[Environment]::GetEnvironmentVariable(),

241
-eq operator, 50, 107, 202, 458
equality operator, 458
errors

access list of, 226
command generated, 226
enable scripting, 287
$false variable, 34
generating, 231
invalid command-line parameters, 45

management, 228–229, 478–480
messages

first time running a script, 177
values, 249

nonterminating, 45, 227, 478
output stream, 479
parameters, 479
records, 227
registry keys, 286
terminating, 45, 227, 478

escape sequences, 64, 96, 318, 447
EscDomains keys, 342
event logs

creation, 370
remote computer access, 371
removal, 369
searches, 362
write to, 370

-Examples flag, 27
Excel, output management, 157
exception, 479
Exchange Management Console, 427
Exchange Management Shell, 427
Exchange Server 2007, 426
-Exclude, 315
executables, 139
execution policies, 474

AllSigned, 288
configuration, 12, 31
execution, registry keys, 336–341
ExecutionPolicy, 288
RemoteSigned (recommended), 288
Restricted, 288
scripting, 287
Unrestricted, 288

exit statement, 33, 184, 476
expanding strings, 446
Experiment with Exchange Management

Shell, 427
Experiment with the command shell, 434
exponent, 118
Export command output as a web page, 170
Export-CliXml, 39, 153
Export-Csv, 155
expressions

alternation, 493
assertions, 492
backreference, 494
calculated property, 159
character class, 488
commonly used, 488

536 | Index

expressions (continued)
constructs, 494
escaped characters, 494
grouping, 490–492
patterns, 493
quantifiers, 489
regular, 488

Extending types, 471
extension points, 86
extensions (see snapins)
ExternalScript, 243

F
-f operator, 75, 457
Favorites, 249
fields, 79
file content, functions, 218
file, reading, 133
[File]::ReadAllText(), 134
files

adding ending information, 41
advanced associations, 29
attributes, 124, 125, 312
changes, monitoring, 321
content

cleared, 311
removal, 311
retrieval, 133

create a file to hold the cmdlet and snapin
source code, 280

create a file to hold the hosting source
code, 284

creation, 280
CSV, 155
custom type extensions, 472, 82
damage, checking for, 321
determining differences between, 359
directory search, 313
encoded in Unicode or another code

page, 144
event log backup, 369
extended properties, adding, 330–332
filenames, 20
filesystems

access, 330
hard link, 332
navigation, 4

filters, 149
formatting, 481
hashes, 321
import and export structured data, 153
integrity verification, 360

Internet downloads, 160
LDIF, import, 386
manipulation of, 405
modification

before a certain date, 310
checking for, 321

moving, 326
navigation, 14
OEM code, 144
removal, 324
rename, 325
searches, 135, 143

specific items, 313
match specific patterns, 314–317

security vulnerabilities, 142
signed, 289
source code, 284
special characters, management, 317
temporary, 141
text

data, 110
manage, 136
parse, 136
replace, 143
unicode, 144

Web pages, Internet downloads, 161
wildcards, 313
XML access, 147
XPath query, 150

-Filter, 256, 315
Filter items in a list or command output, 50
filters

command output, 50
defining, 477
errors, 51
items in a list, 50
key properties, 257
keywords, 193
LDAP, 393, 397
object lists, 52–54
parameters, 341
properties, 257
provider-specific, 315
WMI, 257

Find a command to accomplish a task, 25
Find all files modified before a certain

date, 310
Find event log entries by their frequency, 367
Find event log entries with specific text, 364
Find files that match a pattern, 314
Find items in an array greater or less than a

value, 204

Index | 537

Find items in an array that match a
value, 202

Find the location of common system
paths, 248

Find the owner of a group, 398
Find your script’s location, 247
Find your script’s name, 246
FindAll(), 393, 397
findstr, 33, 135
firewall, 408–410
flags, 123
floating point

numbers, 120
values, 118

flow control statement, 466
fonts

customization, 35
Fonts, 249

for loop, 56, 92, 199
for statement, 464
-Force, 227
foreach

cmdlet, 92
defining, 464
Foreach-Object, 55, 56, 199
input, 188
instances, 264
loop, 92
statement, 11

Forefront Security, 434
formal parameters, 474
Format a date for output, 108
Format.custom.ps1xml, 481
Format-List *, 42, 394, 398, 403, 481
Format-Table, 81

-Auto flag, 43
composable commands, 9
custom column list defining, 43
Get-Help Format-Table, 44
hashtables, 43
Name, displaying, 43
properties, 480
screen space, efficient use of, 43

formatting
date and time, 522
format operators, 128
rules, 102
strings

numeric, 520
syntax, 519

Formatting output, 480
Format-Wide, 102, 481

-Full flag, 27
FullControl, 330, 347
FullName, 156
functions

arguments, 185–187
calculations, 181
command type, 243
content, 477
data return, 182
defining, 180, 243, 473, 477
directory creation, 324
Function:, 311
integration, 8
libraries, 184
name, 243
options, 243
scriptblock, 243
writing, 179

G
GB (gigabyte), 8, 127
-ge operator, 204, 458
Generate large reports and text streams, 114
Get and list the properties of a computer

account, 403
Get and list the properties of a user

account, 394
Get detailed documentation about types and

objects, 78
Get disk usage information, 318
Get help on a command, 26
Get, install, and uninstall management

packs, 437
Get properties of remote registry keys, 351
Get registry items from remote

machines, 349
Get the ACL of a file or directory, 327
Get the ACL of a registry key, 346
Get the children of an Active Directory

container, 390
Get the content of a file, 133
Get the current location, 252
Get the files in a directory, 313
Get the MD5 or SHA1 hash of a file, 321
Get the newest entries from an event log, 363
Get the properties of a group, 397
Get the properties of an organizational

unit, 388
Get the system date and time, 32
Get-Acl, 328
Get-AclMisconfiguration.ps1, 328
Get-Agent, 435

538 | Index

Get-Alert, 439
Get-AliasSuggestion.ps1, 37
Get-Answer.ps1, 162
Get-Arguments.ps1, 186
Get-AuthenticodeSignature, 295
Get-Characteristics.ps1, 139
Get-ChildItem, 115, 135, 159, 310
Get-Command, 10, 25, 77, 196
Get-Content

files contents, 133
monitor changes, 321

item retrieval, 56
ReadCount, 134
strings, generate list of, 196
syntax, 241

Get-Credential, 298
Get-Date, 32, 108, 183
Get-DetailedSystemInformation.ps1, 419
Get-DiskUsage.ps1, 319
Get-DistributionGroup, 431
GetEnumerator(), 207
Get-EventLog, 363
Get-FileHash.ps1, 322
Get-Help

help on an item, 26
view command results, 10

Get-Help About_Environment_Variable, 65
Get-Help About_Escape_Characters, 100
Get-Help About_For, 93
Get-Help About_Foreach, 93
Get-Help about_signing, 289
Get-Help About_Special_Characters, 100,

318
Get-Help About_WildCard, 316
Get-Help Add-DistributionGroupMember,

431
Get-Help Certificate, 304
Get-Help Clear-Content, 312
Get-Help Compare-Object, 359
Get-Help ConvertTo-Html, 170
Get-Help Disable-Rule, 438
Get-Help Enable-Rule, 438
Get-Help Export-CliXml, 361, 369
Get-Help Get-Agent, 436
Get-Help Get-Alert, 440
Get-Help Get-AuthenticodeSignature, 296
Get-Help Get-ChildItem, 311, 317, 318
Get-Help Get-Command, 26
Get-Help Get-Content, 134
Get-Help Get-Date, 32
Get-Help Get-DistributionGroup, 431

Get-Help Get-DistributionGroupMember,
431

Get-Help Get-EventLog, 369
Get-Help Get-ItemProperty, 338
Get-Help Get-Mailbox, 431
Get-Help Get-MaintenanceWindow, 437
Get-Help Get-ManagementPack, 438
Get-Help Get-OwaVirtualDirectory, 433
Get-Help Get-Process, 375
Get-Help Get-Rule, 438
Get-Help Get-Service, 381
Get-Help Get-Task, 439
Get-Help Get-User, 429
Get-Help Get-WmiObject, 257
Get-Help Import-CliXml, 369
Get-Help Install-ManagementPack, 438
Get-Help Measure-Command, 35
Get-Help Measure-Object, 123
Get-Help Move-Item, 327
Get-Help Move-Mailbox, 431
Get-Help New-ItemProperty, 340
Get-Help New-MaintenanceWindow, 437
Get-Help New-TransportRule, 432
Get-Help PowerShell, 77
Get-Help Read-Host, 210
Get-Help Registry, 338, 340
Get-Help Remove-Item, 312, 325
Get-Help Remove-ItemProperty, 339
Get-Help Rename-Item, 326
Get-Help Resolve-Alert, 440
Get-Help Set-Acl, 348
Get-Help Set-DistributionGroup, 431
Get-Help Set-ExecutionPolicy, 289
Get-Help Set-ItemProperty, 339
Get-Help Set-Mailbox, 431
Get-Help Set-OwaVirtualDirectory, 433
Get-Help Set-User, 429
Get-Help Start-Task, 439
Get-Help Stop-Process, 377
Get-Help Stop-Service, 382
Get-Help Trace-Command, 234, 483
Get-Help Uninstall-Agent, 436
Get-Help Uninstall-ManagementPack, 438
Get-Help Where-Object, 317, 377
Get-HelpGet-Acl, 346
Get-History cmdlet, 12
Get-InstalledSoftware.ps1, 410
Get-InvocationInfo.ps1, 244
Get-ItemProperty, 337
Get-Location, 252, 320
Get-MachineStartupShutdownScript.ps1,

407

Index | 539

Get-Mailbox, 430
Get-ManagementPack, 437
Get-Member, 10, 77, 469
GetNetworkCredential(), 298, 299
Get-OwnerReport.ps1, 81
Get-PageUrls, 163
Get-PageUrls.ps1, 164
Get-Process, 7, 22, 49, 196
Get-Progress.ps1, 45
Get-PsDrive, 83
GetRelated(), 262
Get-RemoteRegistryChildItem.ps1, 350
Get-RemoteRegistryKeyProperty.ps1, 351
Get-Rule, 438
Get-Service, 380
Get-Task, 439
Get-Tomorrow.ps1, 182
Get-TraceSource, 483
Get-User cmdlets, 428
Get-UserLogonLogoffScript.ps1, 406
Get-WarningsAndErrors.ps1, 228
Get-WmiClassKeyProperty.ps1, 258
Get-WmiObject

data retrieval, 263
instances, retrieval, 264
startup mode, 382
WMI access, 256

gibibytes, 127
gigabytes, 127
Global scope, 66
glue, xviii
GOTO, 180
greater than or equal operator, 458
grep, 110, 135
Group Policy

Object Editor MMC, 293
scripts, 405

Group Policy templates, 292
Group-Object, 367
-gt operator, 109, 204, 459
Guidelines for other resources, 220

H
handle count, 11
Handle warnings, errors, and terminating

errors, 228
hard links, 332
hashtables

access, 206, 452
defining, 43, 451
generating, 322

hash algorithms
MD5, 321
SHA1, 321

key and value pairs, 452
mapping, 206
order of, not retaining, 207
sorting, 207
(see also arrays)

HelpLink, 410
here strings, 97, 447
Hexadecimal and other number bases, 448
hexadecimal number, 128, 448
Hidden, 312
history storage properties, 35
HKCU:, 311

drive support, 312
(see also Registry)

HKLM:, 311
drive support, 311
(see also Registry)

HNetCfg.FwMgr COM, 409
HNetCfg.FWOpenPort COM, 409
host

functionality, 222
interface, 221
Internet Explorer, names, 342
keys, 342
user interaction, 222

host.EnterNestedPrompt(), 231
hotfixes

installation search, 417
modified files, 136

hotkeys, 484
HREF, parsing, URL, parsing, 164
HTML, 162

ConvertTo-Html, 170
download, 161
export, 170
links, 163
standards, 164
Web pages, 162

HTTP (retrieving web content), 172

I
ICSharpCode.SharpZipLib.Zip, 277
if statement, 89, 460
Import structured data from a CSV file, 156
Import users in bulk to Active Directory, 391
Import-AdUser.ps1, 391
Import-CliXml, 153, 154, 369
Import-Csv, 57, 156

540 | Index

ImportNode(), 152
-Include, 313, 315
index (string formatting), 519
IndexOf(), 103
information

dynamic, 99
sensitive, 296

initialization, 464
Inline C#, 273–276
input

low-fidelity, 110
pipeline, 475
reading, 209
scripts, 474

Input to scripts, 474
-InputObject, 77
Inquire, 46

ErrorAction preference, 479
verbose preference, 483

Insert dynamic information in a string, 99
Install-AgentByName, 436
installing

PowerShell, xxii
snapins, 47

InstallUtil SnapinFilename.dll, 47
instance properties, 70
instances (see objects)
Instant Answers, 162
[int] (integer cast), 118
integers, 118
Interact with Internet protocols, 172
Interact with PowerShell’s global

environment, 254
Interacting with COM objects, 471
interactive shell, 4

customization, 22, 35
programs, running, 19

Interactively filter lists of objects, 52
Internet

downloads, 160
protocols, 172–175
TCP (Transmission Control

Protocol), 172
Internet Explorer

configuration options, 343
domain names, storage, 341
Enhanced Security Configuration, 342
security zone, 341
site addition, 341
UNC paths, 342

invalid command-line parameters, 45
investigate commands, 25

Investigate the invocationInfo variable, 244
InvocationInfo, 44, 244–246
InvocationName, 243
invoke, 20

& (ampersand, invoke operator), 181
& operator, 20
Invoke-History, 38, 39
Invoke-Item, 157
scripts, 473

Invoke a PowerShell expression on a remote
machine, 377

Invoke a PowerShell script from outside
PowerShell, 29

Invoke a script block with alternate culture
settings, 220

Invoke native Windows API calls, 271
Invoke-CmdScript.ps1, 31
Invoke-Inline.ps1, 274
Invoke-RemoteExpression.ps1, 378
Invoke-SqlCommand.ps1, 268
Invoke-WindowsApi.ps1, 271, 332
invoking scripts, 473
ipconfig, 6

list all IP addresses for a computer, 423
renew a DHCP lease, 420
run on the remote computer, 423

-is operator, 460
-isnot operator, 460
IsReadOnly, 79, 312
items

display properties as a list, 42
display properties as a table, 42

J
Join-Path, 253, 320

K
KB (kilobytes), 127
keys, 210, 337
keywords, 11
kibibytes, 127
Kill() method, 8

L
languages

C#, 273
features, 273
filtering, 316
improve scripting, 267
VBScript, 263
WQL, 256

Index | 541

LastWriteTime, 122, 310
Launch a process, 375
LDAP filter, 385–404
-le operator, 204, 459
leading spaces, 107
Learn about types and objects, 77
Learning about types, 469
Length property, 7, 122
less than or equal to operator, 459
libraries, 277

dot-source, 185
functions, 185
Library, 184
naming conventions, 184

LibraryTemperature.ps1, 184
-like operator, 50, 88, 202, 459
links, parsing, 164
-List, 362
List a user’s group membership, 400
List all event logs, 362
List all installed software, 410
List all IP addresses for a computer, 423
List all running services, 380
List and start tasks, 439
List currently running processes, 373
list evaluation syntax (@()), 189
List logon or logoff scripts for a user, 405
List network adapter properties, 424
List startup or shutdown scripts for a

machine, 407
List the members of a group, 401
List the users in an organizational unit, 401
lists

, (comma, list operator), 195
arrays, 195
computer account properties, 403
all IP addresses, 423
items

searches for, 200
sorting, 200

pattern matching, 201
statistical properties, 121
trimming, 107
variables, 196

literal strings, 446
-LiteralPath, 317
Load types from another assembly, 72
LoadWithPartialName, 73, 471
local scope, 66
Local Security Policy MMC, 294
LocalPolicy.CurrentProfile, 408

LocalPolicy.CurrentProfile.Globally
OpenPorts, 409

locations, 252
logical operators

and, 455
decisions based on, 87
exclusive or, 455
not, 455
or, 455

logoff, 405
logon, 29, 405
loop labels, 464
looping statements, 56, 87, 91, 463, 464
Lower(), 106
lowercase, 106
-lt operator, 204, 459

M
Machine, 242
mail (see email)
Mailbox, 428
mailNickname, 397
maintenance window, 436
Make decisions with comparison and logical

operators, 87
Make text selection easier, 484
Manage a running service, 382
Manage alerts, 439
Manage and change the attributes of a

file, 312
Manage distribution groups, 431
Manage Exchange users, 428
Manage files that include special

characters, 317
Manage large conditional statements with

switches, 90
Manage mailboxes, 430
Manage Operations Manager agents, 435
Manage Outlook Web Access, 432
Manage PowerShell security in an

enterprise, 292
Manage printers and print queues, 416
Manage scheduled tasks on a computer, 412
Manage transport rules, 431
management packs, 437
Managing errors, 478
mandatory parameters, 475
Map-Object.ps1, 181
Marshal, 298
-match operator, 88, 103, 202, 460
[Math], 118

542 | Index

math (see operations)
[Math]:::Abs(), 119
[Math]::ACos(), 119
[Math]::ASin(), 119
[Math]::ATan(), 119
[Math]::Cos(), 119
[Math]::Exp(), 120
[Math]::Log(), 120
[Math]::Pow() method, 119
[Math]::Sin(), 119
[Math]::Sqrt(), 119
[Math]::Tan(), 119
[Math]::Truncate(), 118
MB (megabytes), 8, 127
md function, 324
MD5, 321
Measure statistical properties of a list, 121
Measure-Command, 34
Measure-Object, 11, 121
mebibytes, 127
member types, 77
members, 80
-MemberType, 77
menus, 211
Message, 367
methods, 266, 468

instances, 265, 468
management infrastructure, 256

Microsoft
Download Center, 386
Script Center, 409

Microsoft Certificate Services, deploy, 293
Microsoft Forefront, 434
Microsoft Operations Manager, 434
mkdir, 324
modified data, 10
Modify data in an XML file, 151
Modify Internet Explorer settings, 343
Modify or remove a registry key value, 338
Modify properties of a security or

distribution group, 399
Modify properties of a user account, 395
Modify properties of an organizational

unit, 389
modulus operator, 455
Monitor a file for changes, 321
Move a file or directory, 326
Move-Item, 59, 327
Move-Mailbox, 430
mscorlib DLL, 74
MSDN documentation, 79
msiexec.exe, 412

multiplication, 454
MyCommand, 242, 476
MyDocuments, 249
MyProgram.exe, 339

N
namespace, 14, 75, 277
Navigate the registry, 336
navigation

aliases, 337
provider, 336
registry keys, 336

-ne operator, 203, 458
negated equality operator, 458
NetCfg.FwMgr COM, 408
NetHood, 249
netstat.exe, 26
NetworkCredential, 299
New Certificate Rule, 294
New Mailbox, 428
-Newest, 363
New-FileSystemHardLink.ps1, 333
New-GenericObject.ps1, 74
New-ItemProperty, 339
New-MaintenanceWindow, 436
New-Object, 71, 195, 197, 470
New-SelfSignedCertificate.ps1, 291
New-TransportRule, 432
New-ZipFile.ps1, 334
NextValue(), 270
nonterminating errors, 479
-not operator, 455
-notcontains operator, 460
notepad, 6, 8
NoteProperty, 81, 472
-notlike operator, 89, 203, 459
-notmatch operator, 203, 460
-Noun, 25
nouns, 7, 177
Now, 468
number bases

convert, number bases, 128
hexadecimal

binary, 128
octal, 128

numbers
alignment, 519
assignments, 448
bases, 448
constants, 448
conversions, 128

Index | 543

format strings, 519
(see also operations)

Numeric format strings, 519

O
objectClass=User, 402
objects

.NET
Framework, 8
generate live, 71
System.String, 10

attributes, 124
character counting, 7
COM, 76
constructors, 71
custom methods, 80
custom properties, 80
defining, 61
documentation, 78
Foreach-Object, 56
instance, 69, 77
integration, 7
output, 8, 22
pipelines, 50
process, 8
Sort-Object, 49
static members, 77
structured command, 6
System.Diagnostics.Process, 61
unordered sets comparisons, 359
Where-Object, 49

octal number, 449
octal representation, 128
OEM code, 144
Open or close ports in the Windows

firewall, 409
operating systems (see systems)
operations

administrative constants, 127
advanced results, 119
arithmetic, simple, 117–118
binary numbers, 123
calcualtions, 181
conversions, 118, 128
DateTime, 122
functionality, 120
property

calculated, 319
statistical, 121

scripting language support, 118
System.Math, 119

operations manager agents, 435
Operations Manager Command Shell

agents, 435
functionality, 434
packs automation, 437
maintenance window, 436

operators
arithmetic, 117, 453
binary, 456
comparison, 458–460
culture-neutral, 107
logical, 455
other simple, 457
type replacement, 326

-or operator, 455
OU (organizational unit)

containers, 390
creation, 388
lists of users, 402
properties, 388

OuterXml, 149
Out-File, 40, 115
Outlook Web Access

Get-Help Set-OwaVirtualDirectory, 433
management, 432
virtual directory, 432

output, 476
capture, 476, 482
CategoryView, 44
command, 55
dates, 108
default encoding, 40
detailed debug, 45
errors, 44
export as Web pages, 170
formatting, 480
huge files, 92
InvocationInfo, 44
plain text, 49
progress, 45
redirection operators, 40
storage, 40
verbose, 45, 483
warnings, 230
working with each list item, 55
Write-Debug, 46
Write-Progress, 46
Write-Verbose, 46

output retrieval, 476
Output warnings, errors, and terminating

errors, 230

544 | Index

Out-String cmdlet, 104, 482
-OutVariable parameter, 482
Owner file, 80

P
P/Invoke (Platform Invoke), 271–273
Packet privacy, 262
params, 185–187
parent scope, 66
parentheses (), 71
Parse and manage binary files, 139
Parse and manage text-based log files, 136
ParseExpression, 138
passwords

Password, 299
password.txt, 301
requesting, 298
security, 298
storing on disk, 301

paste, 485
-Path, 315
paths, building, 253
pause command, 93
PE (portable executable), 139
Perform an XPath query against an XML

file, 150
Perform complex arithmetic, 119
Perform simple arithmetic, 117
performance

counter access, 270
problems, 235

Perl, 95
permission, 347
Person, 452
personalized prompt, 22
ping, 33
pipeline (|), 9, 22, 49

chain of scripts, 192
cmdlet keywords, 189–193
commas (,), 183
full-fidelity objects, 49
input, 188, 475
output

data return, 182
two value arrays, 476

writing oriented functions, 193
PipelineLength, 243
PipelinePosition, 243
Place common functions in a library, 184
Place formatted information in a string, 101
Place special characters in a string, 98

POP3 (receiving mail), 172
popd command, 6
ports, 409
positional parameters, 7
power of numbers, 119, 127
Prevent a string from including dynamic

information, 100
printers

basics, 413–417
cancel print jobs, 416
clear pending jobs, 416
information retrieval, 413
queue statistics, 414

PrintHood, 249
Private scope, 66
process keyword, 190
Process Monitor

automate registry writes, 357
begin capturing information, 356
configuration and launching, 355
information capture, 356
manually set the configuration

option, 356
registry key settings, 354
review the capture logs for registry

modification, 356
stop capturing information, 356

processes
current running, 373
keyword, 190
launch, 375
sort by start time, 374
Startup, on a remote computer, 377–379
stop or kill, 376

ProcessName parameter, 7
profiles, 486

customization of, 486
interactive shell, 23
scripts, 25
variables, 23

ProgID, 76
Program Files, 47
Programs, 249
Progress output, 46
progress updates, 216
prompts

aliases, command commands, 37
colors, use of in, 24
customization of, 486
ID history, 24
Prompt function, 23

Index | 545

properties
alphabetical sort, 157
calculated, 81, 159
of a collection, 77
extended, adding, 330–332, 471
instance, 468
length, 122
mapping steps, 59
names, 59, 136
-Property, 122
public, 79
static, 70, 468
textual, 122

PropertySet, 472
Provide progress updates on long-running

tasks, 216
providers, 14, 325

accessing paths, 64
content, 63

proxies, 166, 343
ps command, 373
PsBase, 261, 453
PsBase.Children, 390
-PsConsoleFile, 48
PsCredential, 298
PsDrive, 83
PSDriveInfo, 84
PsExec, 377
PsIsContainer, 50, 313
PSPath, 156
Public, 79
public constructors, 79
public fields, 79
public methods, 80
public properties, 79
Publisher software, 410
pushd command, 6
Push-Location, 6
Put(), 389, 399
pwd command, 6

Q
queries, 262, 265
Query a SQL data source, 267
question mark ($?), 33
queue statistics, 414
quickedit, 484
QuickEdit mode, 35, 36
-Quiet switch, 136
quotes ("), 20

R
radians, 119
Read a key of user input, 210
Read a line of user input, 209
ReadAllText(), 134
readcount file, 133
Read-Host, 93, 209
Read-HostWithPrompt.ps1, 211
ReadKey(), 93
ReadOnly, 124, 312
Recent, 249
Recipient configuration, 428
-Recurse, 313, 315
redirection operators, 40
[Reflection.Assembly]::Load(), 73
[Reflection.Assembly]::LoadFile(), 277
registry

keys
ACL (access control list), 346
creation, 339
modification, 338, 343
program settings, 354
properties, 351
remote computers, 348
removal, 338, 340
searches, 344
values, 353
writes, 357

navigation, 15
Registry Editor, 286, 344
RegistryAccessRule, 347

RegSetValue, 356
regular expression, 136, 460
RemoteRegistryChildItem, 348
RemoteSigned, 288, 356
Remove a file or directory, 324
Remove a registry key, 340
Remove a user from a security or distribution

group, 400
Remove elements from an array, 203
Remove-Item, 311, 324, 340
Remove-PsDrive, 85
Rename a file or directory, 325
Rename-Item, 325, 326
Renew a DHCP lease, 420
repeat operations, 91
Repeat operations with loops, 91
-replace, 105, 110, 145, 326
-replace operator, 457
Replace text in a string, 105

546 | Index

Replace text in large files, 145
Replace text spanning multiple lines, 144
Replace text using a pattern instead of plain

text, 144
Replace(), 105
reports, generating large, 114
Reset(), 475
ResolutionState, 439
Resolve-Path, 320
Restart-Service, 382
Restricted, 288
results, filtering language, 316
Resume-Service, 382
Retain changes to environment variables set

by a batch file, 30
Retrieve a specific event log entry, 365
Retrieve printer information, 413
Retrieve printer queue statistics, 414
Retrieving data, 264
Retrieving output from scripts, 476
Return data from a script, function, or script

block, 182
return statement, 180, 184, 476
roots

cube, 120
function, 120
square, 119

RSS, feeds, 147
rules

Deny, 330
disable, 438
enable, 438

Run a PowerShell command, 21
Run ipconfig on the remote computer, 421
Run programs, scripts, and existing tools, 19
RunAs, 300
running scripts, 473

S
S (static) icon, 79
safeguard techniques, 10
Safely build file paths out of their

components, 253
sAMAccountName, 397, 403
Schedule a maintenance window, 436
schtasks.exe, 412
scope

child, 66
global, 254

local, 66
names, 477
parent, 66
-Scope, 66
variables, 445

screen
buffers, 484
scraping, 162

Script blocks
name, 244

add a ScriptProperty, 84
defining, 243, 478

Script scope, 66
Scriptblock, setscriptblock, 84
scripts

.NET Framework, 11
adding, 283
arguments, 185–187, 474
blocks

alternate culture settings, 220
data return, 182
invoke, 220
writing, 180

calls, 29
COM interfaces, 266
for constant speed, 94
current location, 320
debug solutions, 231–233
defining, 243, 473
diagnostics, 231
dot-source, 254, 473
filenames, 177
functions, 179
guidelines, 220
input, 474
invoke, 29, 473
keywords, 475
libraries, 254
location, 247
name

current running, 243
finding, 246

parameters, 474
paths, programmatically specify, 243
performance profile, 234–239
PowerShell.exe, 29
programmatically specify, 317
readability, 31
running, 473
SCRIPT, 65

Index | 547

ScriptLineNumber, 242
ScriptMethod, 85, 472
ScriptName, 242, 476
ScriptProperty, 81, 83, 472
SetScriptBlock, 84
signed, 289
testing on local installations, 385–387
traces, 234
ubiquitous, 11
users

input, 218
interaction, 209
written by, 283

return values, 476
writing, 176, 473

culture-aware, 107, 217
guidelines, 217

SDK libraries, 276
Search a file for text or a pattern, 135
Search a string for text or a pattern, 102
Search and replace text in a file, 143
Search for a computer account, 402
Search for a security or distribution

group, 396
Search for a user account, 393
Search for WMI classes, 258
Search help for text, 28
Search the certificate store, 304
Search the Windows registry, 344
Search the Windows start menu, 250
Search-CertificateStore.ps1, 304
searches

array, 202
certificate store, 304
commands, 25
entries, 365
event logs, 364
files, 135
finding domain names, 402
help, 28
-match, 103
matching filters, 394
for owners, 398
patterns, 135
regular expressions, 28
SearchText, 135
security group, 396
StartMenu, 250
strings, 102
text, 25, 28, 135, 143
verbs, 25

wildcards, 103
WMI, 257

Search-Help.ps1, 28
Search-Registry.ps1, 345
SearchScope, 402
Search-StartMenu.ps1, 251
Search-WmiNamespace.ps1, 258
Securely handle sensitive information, 296
Securely request usernames and

passwords, 298
Securely store credentials on disk, 301
SecureString, unprotect, 296
security

ACL (access control list), 328
certificate searches, 304
credentials, 300, 302
digital signature, 290
Enhanced configuration, 289
enterprise setting, management, 292
files, 142
Forefront, 434
groups, 395
Internet Explorer Zone, 341
misconfigurations, 328
passwords, 298, 301
policies

execution, 288
software restriction, 294

privileges, 262
properties, 397
scripts, 21, 177, 287
sensitive information, 296
users, 298, 399

Sed, 110
Select-FilteredObject.ps1, 52
Select-GraphicalFilteredObject.ps1, 223
SelectNodes(), 150
Select-Object, 81
Select-String, 110, 135
Send an email, 170
Send-MailMessage.ps1, 171
Send-TcpRequest.ps1, 173
SendTo, 249
sessions, 38

history, 12, 38
transcripts, 41

Set, 79
Set properties of remote registry keys, 353
Set the ACL of a file or directory, 329
Set the ACL of a registry key, 347
Set-Acl, 329, 347

548 | Index

Set-Alias, 23
Set-AuthenticodeSignature, 289, 290, 303
Set-ConsoleProperties.ps1, 35
Set-Content variable, 241
Set-DistributionGroup, 431
Set-ExecutionPolicy, 287, 474
SetInfo(), 389, 395, 399
Set-ItemProperty, 338
Set-Location, 336
Set-Mailbox, 430
Set-OwaVirtualDirectory, 432
Set-PsDebug, 234, 482
Set-RemoteRegistryKeyProperty.ps1, 353
SetScriptBlock, 84
setup wizard, 386
Set-User cmdlets, 428
SHA1, 322
SHA256, 322
SharpZipLib, 277
Shell.Application, 331
Shift key, 211
shortcuts

directory entries, 387
invoke methods, 256
operations, 93
type, 470
WQL language, 256

shutdown.exe, 26
SideIndicator, 359
Sign a PowerShell script or formatting

file, 289
SilentlyContinue

ErrorAction preference, 479
hide output, 46
verbose preference, 483

-Simple, 135
simple assignment, 448
simple operators, 453
Simplify math with administrative

constants, 127
Simplify most where-object filters, 51
sine, 119
single quote ('), 20
single-line option (?s), 103, 138, 145
sites, 341
Size (MB), 81
snapins

add to your session, 282
compiling, 282
defining, 282
installation and registration, 282

shell extensions, 47
use of, 282

software
list all installed, 410
removal, 412
restriction policies, 294

Software restriction policies, 294
sort a hashtable by key or value, 207
Sort an array or list of items, 200
sorting rules, 220
Sort-Object, 9, 49, 200
Source, 371
Split(), 110
square brackets ([]), 67
square roots, 119
Start a process as another user, 300
Start(), 107
StartMenu, 249
StartMode, 265
Start-ProcessAsUser.ps1, 300
Start-Sleep, 93
Startup, 249
statements, 443

begin, 475
break, 464, 466
comparison value, 462
conditional, 460
continue, 464, 466
control, 466
do … until, 465
do … while, 465
end, 475
exit, 476
for, 464
foreach, 464
increment, 464
looping, 464
process, 475
return, 476
switch, 461
while, 465

static, 468
defining, 79

static IP address, 421–423
static members, 77
static methods, 68
static properties, 70
statistical properties, 121
Status, 50
Stop

defining, 7

Index | 549

ErrorAction preference, 479
errors, 46
-Process, 6, 10
verbose preference, 483

Stop a process, 376
Stop-Process, 376
Stop-Service, 382
Stop-Transcript, 41
Store information in variables, 62
Store the output of a command in a CSV

file, 155
streaming, 115
StreamReader, 141
strict mode, 231
String formatting syntax, 519
String(), 108
String.Format(), 102
strings

arguments, 19
capitalization, changing, 107

creating, 96
double quotes (" "), 96
escape sequences, 96
expanding, 96–98, 446
format syntax, 519
here strings, 447
information

dynamic, 99
formatted, 101

leading spaces, removal, 107
literal (nonexpanding), 96–98, 446
lowercase, 106
multiline or formatted, 97
numeric format, 519
replacement rules, 96
single quote ('), 96, 100
special characters, 100
text, literal strings and rules, 101
trailing spaces, removal, 107
uppercase, 106
variable names, 100
(see also here strings; variables)

structured commands, 7
subexpressions, 99
SubInAcl.exe, 347
subkeys, 342, 405
subtraction, 454
Summarize system information, 419
Suspend-Service, 382

/quiet switch, 412
switch statement, 90, 462
syntax

filters, 397
Noun, Verb, 499

System Center Demonstration Toolkit, 434
System Center Operations Manager

2007, 434
System.Collections.ArrayList, 73, 183, 206
System.DateTime, 70
System.Diagnostics.EventLog, 371
[System.Diagnostics.EventLog]::CreateEvent

Source(), 369
[System.Diagnostics.EventLog]::Delete(),

370
[System.Diagnostics.EventLog]::DeleteEvent

Source(), 370
System.Diagnostics.PerformanceCounter,

270
System.Diagnostics.Process, 61, 68, 374
[System.Diagnostics.Process]::Start(), 375
System.Diagnostics.ProcessStartInfo, 375
System.DirectoryServices.DirectorySearcher,

393, 397, 402
[System.Environment]::CurrentDirectory, 70
System.Globalization.StringInfo, 219
System.IO.DirectoryInfo, 314
System.IO.FileInfo, 314
[System.IO.Path]::GetTempFilename(), 141
System.Management.Automation.PS

DriveInfo, 83
System.Management.ManagementClass, 262
System.Management.ManagementObject,

262
System.Management.ManagementObject

Searcher, 262
System.Math, 119
System.Net.Mail.MailMessage, 170
System.Net.WebClient, 160, 161
System.Reflection.Assembly, 72, 470
[System.Reflection.Assembly]:LoadFile(),

277
System.Security.AccessControl.FileSecurity,

328
System.Security.AccessControl.Registry

Security, 346
System.Security.Cryptography.X509

Certificates.X509Store, 304
System.ServiceProcess.ServiceController, 381

550 | Index

[System.ServiceProcess.ServiceController]::
GetServices(), 383

System.Text.StringBuilder, 116
System.Web.Mail.SmtpMail, 172
System.Xml.XmlDocument, 149
System.Xml.XmlElement, 149
systems

attributes, update, 312
date, 32
event logs, 362
information, summarize, 419
inventory, 264
operatingSystem, 403

ServicePack, 403
Version, 403

path location, 248
services, 380–384
System.Diagnostics.Process, 8
time, 32

T
tab, 7, 98

completion, 487
Tab key customization, 487
tabexpansion, 487

tables, formatting, 43
tail, 321
tangent, 119
Target parameter, 242
tasks, 56, 439

administration, 25, 412
advanced, 261

TCP (Transmission Control Protocol), 172
Telnet, 172
Templates, 249
terminating errors, 228, 479
Test active directory scripts on a local

installation, 385
Test instance, 386
Test-HotfixInstallation.ps1, 418
throw statement, 230
Ticks property, 122
-TimeStampServer, 290
tokens, 443
TotalDays property, 8
trace

defining, 482
sources, 234, 483
-Trace parameter, 234
Trace-Command, 234

trailing spaces, 107
transport rules, 431

trap statement, 228, 479
Trim a string, 107
Trim(), 107
true or false, 50, 88, 136
truncation, 118
Trusted Publishers Management, 295
type

capitalization, changing, 107
case-insensitive, 107
classes, with long names, 74
conversions, 458
default, 72
documentation, 78
event log retrieval, 364
extension files, 86, 82
header removal, 373
instances, 470
libraries (assembly), 72
methods, 82, 469
namespace, 75
to object conversion, 110
operators, 460
patterns, 144
processing, 373
properties, 82, 469, 471
replacement, 105, 110, 144
safety, 73
searches, 110, 135
selection, 484
shortcuts, 72, 470
static members, 77
Types.custom.ps1xml, 83, 473
types.ps1xml, 472

Types.custom.ps1xml, 83, 473
types.ps1xml, 472
Typing for long class names, 74

U
ubiquitous scripting, 11
-UFormat, 108
unary operator, 78, 88
UNC paths, 342
unicode

text files, 144
Unicode standard format, 29, 218

Uninstall an application, 411
Uninstall-Agent, 435
UninstallString, 410
Unrestricted, 288
Update-FormatData cmdlet, 481
Update-TypeData, 83
Upper(), 106

Index | 551

uppercase, 106
URLs, HTML Web page links, 163–166
Use .NET to perform advanced WMI

tasks, 261
Use a COM object, 76
Use Excel to manage command output, 157
Use hotkeys to operate the shell more

efficiently, 484
Use the ArrayList class for advanced array

tasks, 205
Use the Win32_

NetworkAdapterConfiguration
WMI class, 421, 423

Use-Culture.ps1, 220
users

accounts
creation, 390
Guest, 329
import, 391
property lists, 394
searches, 393

Active Directory, 428
certificates, 303
email, 428
Exchange management, 428
file content, 218
first-class, 8
input, 209
interfaces

graphic, 223
host, 221

invoked commands, 242
menus, display, 211–213
output and messages, display, 213–215
property modification, 395
script interaction, 209
SID, 405
start processes, 300
supplied name, 243
variable settings, 241
written by, 283

User, 242
User Mailbox, 428
UserName, 299, 405
utilities

tool directory, 21
zip, 334

V
values

binary, 124
false, 124
pipeline by property name, 59
registry keys, 337, 451
return, 180
true, 124

Value, 207
variable storage, 242
variables

access control, 65
automatic, 496
calculations, 55
configurations, 46
defining, 65, 444
environment, 30, 63, 240
escaping support, 64
expansion, 96
$false, 34
functions, 66
global, 254
input object, 50
newlines, 97
numeric data, 448
scope control, 65
script

exit codes, 33
storage, 23

security, 297
special characters, 98
status of last command, 33
storage

credentials, 301
information, 62
results, 8

string, 95
subexpressions, 99
syntax, 64
True, 50
values, 84, 99

Variable:, 311
VBScript

administrators, 256
conversion to PowerShell, 410
data retrieval, 264
improve language, 267
WMI conversion, 263

552 | Index

-Verbose, 46
verbose

automatic variables, 483
output, 46

verbs, 7, 177
action on an item, 177
Noun, Verb

common verbs, 499–501
pattern, 3, 6, 26, 177
syntax, 499

-Verb, 25
Verify integrity of file sets, 360
Verify the digital signature of a PowerShell

script, 295
VerifyCategoryRule.ps1, 283
View a registry key, 337
View and modify environment variables, 240
View the errors generated by a

command, 226
virtual directory, 432
virtual labs, 434
Virtual PC images, 434
visibility, of items, 66
visit each element of an array, 199
VMImages directory, 435
[void], 183

W
-Wait, 321
WaitForExit(), 69
warnings

alerts, management, 439
management, 228–229
output, 230

Web
HTML, 162
Internet downloads, 161
proxies, 167
service connections, 166–169
WebClient, 161
XHTML, 162

WebService, 166
-WhatIf, 10, 382
Where-Object, 9, 49–51, 310
while statement, 465
whitespace characters, 107
wildcards

*.txt, 135
characters, specify ranges of, 318
discovery commands, 10

defining, 103
list, 313
support, 7, 27, 314–317

Win32_NetworkAdapterConfiguration, 421,
423, 424

Win32_PerfFormattedData_Spooler_
PrintQueue, 414

Win32_Printer, 413
Win32_PrinterConfiguration, 414
Win32_PrinterController, 414
Win32_PrinterDriver, 414
Win32_PrinterDriverDll, 414
Win32_PrinterSetting, 414
Win32_PrinterShare, 414
Win32_Product, 412
Win32_QuickfixEngineering, 417
Win32_TCPIPPrinterPort, 414
WinDiff, 359
window

maintenance, 436
size, 35, 484

Windows
cooked input mode, 36
SDK download, 279
standard command names, 177
Start menu, console customization, 36
tools and applications, 6
WMI (see Windows Management

Instrumentation)
XP SP2, 409

Windows Management Instrumentation
(WMI)

class searches, 258–261
class subsets, 509–515
libraries, xviii
management infrastructure, 256
technologies, bridging, 13

Windows SDK, 279, 283
wizard guided tasks, 427
WMI (see Windows Management

Instrumentation)
WMIC tools, 256
[WmiClass], 256, 263, 266
[WmiSearcher], 256
word count, 121
Work with .NET objects, 67
Work with each item in a list or command

output, 54
Work with numbers as binary, 123
Work with the registry of a remote

computer, 348

Index | 553

Working with degrees instead of
radians, 121

Working with the .NET Framework, 467
Write a function, 179
Write a pipeline-oriented function, 193
Write a script, 176
Write a script block, 180
Write culture-aware scripts, 217
Write pipeline-oriented scripts with cmdlet

keywords, 189
Write to an event log, 370
Write-Debug, 46, 214, 231
WriteEntry(), 370
Write-Error, 230, 479
Write-Host cmdlet, 24
Write-Output, 183
Write-Progress, 46
Write-Verbose, 46, 214
WriteVerbose(), 483
Write-Warning, 230
writing scripts, reusing functionality, 473
WScript.Shell COM, 248
WSH scripters, xviii

X
XHTML web pages, 162
XML

access information, 147
content, 12
items, filtering, 149
modify data, 151
OuterXml, 149
variables, 452
XmlDocument, 453
XmlElement, 453
XPath query, 150

XML, save, 153
XmlDocument, 147
XmlElement, 147
-xor operator, 455
XPath query, 150
xport-CliXml, 360

Z
zero-based index, 519
ZIP

ZIP archives, 334
ZipEntry, 277

zone identifier, 344

About the Author
Lee Holmes is a developer on the Microsoft Windows PowerShell team and has
been an authoritative source of information about PowerShell since its earliest
betas. His vast experience with Windows PowerShell lets him integrate both the
“how” and the “why” into discussions. Lee’s integration with the PowerShell and
administration community (via newsgroups, mailing lists, and blogs) gives him a
great deal of insight into the problems faced by all levels of administrators and
PowerShell users alike.

Colophon
The animal on the cover of Windows PowerShell Cookbook is a box turtle (Terrapene
carolina carolina). This box turtle is native to North America, specifically northern
areas in the Unites States and northern parts of Mexico. The average male turtle is
about six inches long and has red eyes; the female is a bit smaller and has yellow
eyes. This turtle is omnivorous as a youth but largely herbivorous as an adult. It has a
domed shell that is hinged on the bottom and snaps tightly shut if the turtle is in
danger (once its head, tail, and limbs are safely inside). Box turtles usually stay
within the same area they were born, rarely leaving a 750 foot radius. During mating
rituals, male turtles will sometimes shove and push each other to win the female’s
attention. During copulation, it is possible for the male turtle to fall backward, be
unable to right himself, and starve to death.

Although box turtles can live for more than 100 years, their habitats are being seri-
ously threatened by land development and roads. Turtles need loose, humid soil to
lay eggs and burrow during their long hibernation season. Box turtles are also highly
susceptible to contracting diseases from household pets. Experts strongly discourage
taking turtles from their native habitat—not only will it disrupt the community’s
breeding opportunities, but the turtle will become extremely stressed when outside
of its known habitat and perish quickly.

The cover image is from Dover Picotorial Images. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Windows PowerShell Cookbook
	Table of Contents
	Foreword
	Glue, Enablers, and a WSH
	That Lee Guy

	Preface
	Who This Book Is For
	How This Book Is Organized
	Part 1: Tour
	Part 2: Fundamentals
	Part 3: Common Tasks
	Part 4: Administrator Tasks
	Part 5: References

	What You Need to Use This Book
	Conventions Used in This Book
	Code Examples
	Obtaining Code Examples
	Using Code Examples

	Comments and Questions
	Acknowledgments

	Part I
	A Guided Tour of Windows PowerShell
	Introduction
	An Interactive Shell
	Structured Commands (Cmdlets)
	Deep Integration of Objects
	Administrators As First-Class Users
	Composable Commands
	Techniques to Protect You from Yourself
	Common Discovery Commands
	Ubiquitous Scripting
	Ad Hoc Development
	Bridging Technologies
	Namespace Navigation Through Providers
	Much, Much More

	Part II
	The Windows PowerShell Interactive Shell
	1.0 Introduction
	1.1 Run Programs, Scripts, and Existing Tools
	Problem
	Solution
	Discussion
	See Also

	1.2 Run a PowerShell Command
	Problem
	Solution
	Discussion
	See Also

	1.3 Customize Your Shell, Profile, and Prompt
	Problem
	Solution
	Discussion
	See Also

	1.4 Find a Command to Accomplish a Task
	Problem
	Solution
	Discussion
	See Also

	1.5 Get Help on a Command
	Problem
	Solution
	Discussion
	See Also

	1.6 Program: Search Help for Text
	See Also

	1.7 Invoke a PowerShell Script From Outside PowerShell
	Problem
	Solution
	Discussion
	See Also

	1.8 Program: Retain Changes to Environment Variables Set by a Batch File
	See Also

	1.9 Get the System Date and Time
	Problem
	Solution
	Discussion
	See Also

	1.10 Determine the Status of the Last Command
	Problem
	Solution
	Discussion

	1.11 Measure the Duration of a Command
	Problem
	Solution
	Discussion
	See Also

	1.12 Customize the Shell to Improve Your Productivity
	Problem
	Solution
	Discussion
	See Also

	1.13 Program: Learn Aliases for Common Commands
	See Also

	1.14 Access and Manage Your Console History
	Problem
	Solution
	Discussion
	See Also

	1.15 Store the Output of a Command into a File
	Problem
	Solution
	Discussion
	See Also

	1.16 Add Information to the End of a File
	Problem
	Solution
	Discussion
	See Also

	1.17 Record a Transcript of Your Shell Session
	Problem
	Solution
	Discussion

	1.18 Display the Properties of an Item As a List
	Problem
	Solution
	Discussion

	1.19 Display the Properties of an Item As a Table
	Problem
	Solution
	Discussion
	See Also

	1.20 Manage the Error Output of Commands
	Problem
	Solution
	Discussion
	See Also

	1.21 Configure Debug, Verbose, and Progress Output
	Problem
	Solution
	Discussion
	See Also

	1.22 Extend Your Shell with Additional Snapins
	Problem
	Solution
	Discussion
	See Also

	1.23 Use Console Files to Load and Save Sets of Snapins
	Problem
	Solution
	Discussion
	See Also

	Pipelines
	2.0 Introduction
	2.1 Filter Items in a List or Command Output
	Problem
	Solution
	Discussion
	See Also

	2.2 Program: Simplify Most Where-Object Filters
	See Also

	2.3 Program: Interactively Filter Lists of Objects
	See Also

	2.4 Work with Each Item in a List or Command Output
	Problem
	Solution
	Discussion
	See Also

	2.5 Automate Data-Intensive Tasks
	Problem
	Solution
	Discussion
	See Also

	Variables and Objects
	3.0 Introduction
	3.1 Store Information in Variables
	Problem
	Solution
	Discussion
	See Also

	3.2 Access Environment Variables
	Problem
	Solution
	Discussion
	See Also

	3.3 Control Access and Scope of Variables and Other Items
	Problem
	Solution
	Discussion
	Variables
	Functions
	Aliases and drives

	See Also

	3.4 Work with .NET Objects
	Problem
	Solution
	Discussion
	Static methods
	Instance methods
	Static properties
	Instance properties

	See Also

	3.5 Create an Instance of a .NET Object
	Problem
	Solution
	Discussion
	Load types from another assembly

	See Also

	3.6 Program: Create Instances of Generic Objects
	3.7 Reduce Typing for Long Class Names
	Problem
	Solution
	Discussion
	See Also

	3.8 Use a COM Object
	Problem
	Solution
	Discussion
	See Also

	3.9 Learn About Types and Objects
	Problem
	Solution
	Discussion
	See Also

	3.10 Get Detailed Documentation About Types and Objects
	Problem
	Solution
	Discussion
	Public constructors
	Public fields/public properties
	Public methods

	See Also

	3.11 Add Custom Methods and Properties to Objects
	Problem
	Solution
	Discussion
	Calculated properties

	See Also

	3.12 Add Custom Methods and Properties to Types
	Problem
	Solution
	Discussion
	Getting started
	Add a ScriptProperty
	Add an AliasProperty
	Add a ScriptMethod
	Add other extension points

	Looping and Flow Control
	4.0 Introduction
	4.1 Make Decisions with Comparison and Logical Operators
	Problem
	Solution
	Discussion
	See Also

	4.2 Adjust Script Flow Using Conditional Statements
	Problem
	Solution
	Discussion

	4.3 Manage Large Conditional Statements with Switches
	Problem
	Solution
	Discussion
	See Also

	4.4 Repeat Operations with Loops
	Problem
	Solution
	Discussion
	See Also

	4.5 Add a Pause or Delay
	Problem
	Solution
	Discussion
	See Also

	Strings and Unstructured Text
	5.0 Introduction
	5.1 Create a String
	Problem
	Solution
	Discussion
	See Also

	5.2 Create a Multiline or Formatted String
	Problem
	Solution
	Discussion

	5.3 Place Special Characters in a String
	Problem
	Solution
	Discussion
	See Also

	5.4 Insert Dynamic Information in a String
	Problem
	Solution
	Discussion
	See Also

	5.5 Prevent a String from Including Dynamic Information
	Problem
	Solution
	Discussion
	See Also

	5.6 Place Formatted Information in a String
	Problem
	Solution
	Discussion
	See Also

	5.7 Search a String for Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	5.8 Replace Text in a String
	Problem
	Solution
	Discussion
	See Also

	5.9 Convert a String to Upper/Lowercase
	Problem
	Solution
	Discussion
	See Also

	5.10 Trim a String
	Problem
	Solution
	Discussion
	See Also

	5.11 Format a Date for Output
	Problem
	Solution
	Discussion
	See Also

	5.12 Program: Convert Text Streams to Objects
	See Also

	5.13 Generate Large Reports and Text Streams
	Problem
	Solution
	Discussion
	Creating large text reports

	Calculations and Math
	6.0 Introduction
	6.1 Perform Simple Arithmetic
	Problem
	Solution
	Discussion
	See Also

	6.2 Perform Complex Arithmetic
	Problem
	Solution
	Discussion
	Working with any root
	Working with degrees instead of radians

	See Also

	6.3 Measure Statistical Properties of a List
	Problem
	Solution
	Discussion

	6.4 Work with Numbers As Binary
	Problem
	Solution
	Discussion
	See Also

	6.5 Simplify Math with Administrative Constants
	Problem
	Solution
	Discussion

	6.6 Convert Numbers Between Bases
	Problem
	Solution
	Discussion
	See Also

	Part III
	Simple Files
	7.0 Introduction
	7.1 Get the Content of a File
	Problem
	Solution
	Discussion
	See Also

	7.2 Search a File for Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	7.3 Parse and Manage Text-Based Logfiles
	Problem
	Solution
	Discussion
	See Also

	7.4 Parse and Manage Binary Files
	Problem
	Solution
	Discussion
	See Also

	7.5 Create a Temporary File
	Problem
	Solution
	Discussion
	See Also

	7.6 Search and Replace Text in a File
	Problem
	Solution
	Discussion
	Work with files encoded in Unicode or another (OEM) code page
	Replace text using a pattern instead of plain text
	Replace text that spans multiple lines
	Replace text in large files

	See Also

	Structured Files
	8.0 Introduction
	8.1 Access Information in an XML File
	Problem
	Solution
	Discussion
	See Also

	8.2 Perform an XPath Query Against an XML File
	Problem
	Solution
	Discussion

	8.3 Modify Data in an XML File
	Problem
	Solution
	Discussion

	8.4 Easily Import and Export Your Structured Data
	Problem
	Solution
	Discussion

	8.5 Store the Output of a Command in a CSV File
	Problem
	Solution
	Discussion
	See Also

	8.6 Import Structured Data from a CSV File
	Problem
	Solution
	Discussion
	See Also

	8.7 Use Excel to Manage Command Output
	Problem
	Solution
	Discussion
	See Also

	Internet-Enabled Scripts
	9.0 Introduction
	9.1 Download a File from the Internet
	Problem
	Solution
	Discussion
	See Also

	9.2 Download a Web Page from the Internet
	Problem
	Solution
	Discussion
	See Also

	9.3 Program: Get-PageUrls
	See Also

	9.4 Program: Connect-WebService
	See Also

	9.5 Export Command Output As a Web Page
	Problem
	Solution
	Discussion

	9.6 Program: Send an Email
	See Also

	9.7 Program: Interact with Internet Protocols
	See Also

	Code Reuse
	10.0 Introduction
	10.1 Write a Script
	Problem
	Solution
	Discussion
	See Also

	10.2 Write a Function
	Problem
	Solution
	Discussion
	See Also

	10.3 Write a Script Block
	Problem
	Solution
	Discussion
	See Also

	10.4 Return Data from a Script, Function, or Script Block
	Problem
	Solution
	Discussion
	See Also

	10.5 Place Common Functions in a Library
	Problem
	Solution
	Discussion
	See Also

	10.6 Access Arguments of a Script, Function, or Script Block
	Problem
	Solution
	Discussion
	See Also

	10.7 Access Pipeline Input
	Problem
	Solution
	Discussion
	See Also

	10.8 Write Pipeline-Oriented Scripts with Cmdlet Keywords
	Problem
	Solution
	Discussion
	See Also

	10.9 Write a Pipeline-Oriented Function
	Problem
	Solution
	Discussion
	See Also

	Lists, Arrays, and Hashtables
	11.0 Introduction
	11.1 Create an Array or List of Items
	Problem
	Solution
	Discussion
	See Also

	11.2 Create a Jagged or Multidimensional Array
	Problem
	Solution
	Discussion
	See Also

	11.3 Access Elements of an Array
	Problem
	Solution
	Discussion
	See Also

	11.4 Visit Each Element of an Array
	Problem
	Solution
	Discussion
	See Also

	11.5 Sort an Array or List of Items
	Problem
	Solution
	Discussion

	11.6 Determine Whether an Array Contains an Item
	Problem
	Solution
	Discussion
	See Also

	11.7 Combine Two Arrays
	Problem
	Solution
	Discussion
	See Also

	11.8 Find Items in an Array That Match a Value
	Problem
	Solution
	Discussion
	See Also

	11.9 Remove Elements from an Array
	Problem
	Solution
	Discussion

	11.10 Find Items in an Array Greater or Less Than a Value
	Problem
	Solution
	Discussion
	See Also

	11.11 Use the ArrayList Class for Advanced Array Tasks
	Problem
	Solution
	Discussion
	See Also

	11.12 Create a Hashtable or Associative Array
	Problem
	Solution
	Discussion
	See Also

	11.13 Sort a Hashtable by Key or Value
	Problem
	Solution
	Discussion
	See Also

	User Interaction
	12.0 Introduction
	12.1 Read a Line of User Input
	Problem
	Solution
	Discussion
	See Also

	12.2 Read a Key of User Input
	Problem
	Solution
	Discussion

	12.3 Program: Display a Menu to the User
	See Also

	12.4 Display Messages and Output to the User
	Problem
	Solution
	Discussion
	See Also

	12.5 Provide Progress Updates on Long-Running Tasks
	Problem
	Solution
	Discussion

	12.6 Write Culture-Aware Scripts
	Problem
	Solution
	Discussion
	Date, time, and number formats
	Complexity of user input and file content
	Capitalization rules
	Sorting rules
	Other guidelines

	See Also

	12.7 Program: Invoke a Script Block with Alternate Culture Settings
	See Also

	12.8 Access Features of the Host’s User Interface
	Problem
	Solution
	Discussion

	12.9 Program: Add a Graphical User Interface to Your Script
	See Also

	Tracing and Error Management
	13.0 Introduction
	13.1 View the Errors Generated by a Command
	Problem
	Solution
	Discussion
	See Also

	13.2 Handle Warnings, Errors, and Terminating Errors
	Problem
	Solution
	Discussion
	See Also

	13.3 Output Warnings, Errors, and Terminating Errors
	Problem
	Solution
	Discussion
	See Also

	13.4 Debug a Script
	Problem
	Solution
	Discussion
	See Also

	13.5 Collect Detailed Traces of a Script or Command
	Problem
	Solution
	Discussion
	See Also

	13.6 Program: Analyze a Script’s Performance Profile
	See Also

	Environmental Awareness
	14.0 Introduction
	14.1 View and Modify Environment Variables
	Problem
	Solution
	Discussion
	See Also

	14.2 Access Information About Your Command’s Invocation
	Problem
	Solution
	Discussion
	Scripts
	Functions
	Script blocks

	14.3 Program: Investigate the InvocationInfo Variable
	See Also

	14.4 Find Your Script’s Name
	Problem
	Solution
	Discussion
	See Also

	14.5 Find Your Script’s Location
	Problem
	Solution
	Discussion
	See Also

	14.6 Find the Location of Common System Paths
	Problem
	Solution
	Discussion
	See Also

	14.7 Program: Search the Windows Start Menu
	See Also

	14.8 Get the Current Location
	Problem
	Solution
	Discussion
	See Also

	14.9 Safely Build File Paths Out of Their Components
	Problem
	Solution
	Discussion

	14.10 Interact with PowerShell’s Global Environment
	Problem
	Solution
	Discussion
	See Also

	Extend the Reach of Windows PowerShell
	15.0 Introduction
	15.1 Access Windows Management Instrumentation Data
	Problem
	Solution
	Discussion
	See Also

	15.2 Program: Determine Properties Available to WMI Filters
	See Also

	15.3 Program: Search for WMI Classes
	See Also

	15.4 Use .NET to Perform Advanced WMI Tasks
	Problem
	Solution
	Advanced instance features
	Advanced class features
	Advanced query feature

	Discussion
	See Also

	15.5 Convert a VBScript WMI Script to PowerShell
	Problem
	Solution
	Discussion
	Retrieving data
	Calling methods on an instance
	Calling methods on a class

	See Also

	15.6 Automate Programs Using COM Scripting Interfaces
	Problem
	Solution
	Discussion
	See Also

	15.7 Program: Query a SQL Data Source
	See Also

	15.8 Access Windows Performance Counters
	Problem
	Solution
	Discussion
	See Also

	15.9 Program: Invoke Native Windows API Calls
	See Also

	15.10 Program: Add Inline C# to Your PowerShell Script
	See Also

	15.11 Access a .NET SDK Library
	Problem
	Solution
	Discussion
	See Also

	15.12 Create Your Own PowerShell Cmdlet
	Problem
	Discussion
	Step 1: Download the Windows SDK
	Step 2: Create a file to hold the cmdlet and snapin source code
	Step 3: Compile the snapin
	Step 4: Install and register the snapin
	Step 5: Add the snapin to your session
	Step 6: Use the snapin

	15.13 Add PowerShell Scripting to Your Own Program
	Problem
	Discussion
	Step 1: Download the Windows SDK
	Step 2: Create a file to hold the hosting source code
	Step 3: Compile and run the example

	See Also

	Security and Script Signing
	16.0 Introduction
	16.1 Enable Scripting Through an Execution Policy
	Problem
	Solution
	Discussion
	See Also

	16.2 Sign a PowerShell Script or Formatting File
	Problem
	Solution
	Discussion
	See Also

	16.3 Program: Create a Self-Signed Certificate
	Discussion
	See Also

	16.4 Manage PowerShell Security in an Enterprise
	Problem
	Solution
	Discussion
	Apply PowerShell’s Group Policy templates
	Deploy Microsoft Certificate services
	Apply software restriction policies

	See Also

	16.5 Verify the Digital Signature of a PowerShell Script
	Problem
	Solution
	Discussion

	16.6 Securely Handle Sensitive Information
	Problem
	Solution
	Discussion
	See Also

	16.7 Securely Request Usernames and Passwords
	Problem
	Solution
	Discussion
	See Also

	16.8 Program: Start a Process As Another User
	Discussion
	See Also

	16.9 Securely Store Credentials on Disk
	Problem
	Solution
	Save the credential’s password to disk
	Recreate the credential from the password stored on disk

	Discussion
	See Also

	16.10 Access User and Machine Certificates
	Problem
	Solution
	Discussion
	See Also

	16.11 Program: Search the Certificate Store
	Discussion
	See Also

	Part IV
	Files and Directories
	17.0 Introduction
	17.1 Find All Files Modified Before a Certain Date
	Problem
	Solution
	Discussion
	See Also

	17.2 Clear or Remove a File
	Problem
	Solution
	Discussion

	17.3 Manage and Change the Attributes of a File
	Problem
	Solution
	Discussion
	See Also

	17.4 Get the Files in a Directory
	Problem
	Solution
	Discussion
	See Also

	17.5 Find Files That Match a Pattern
	Problem
	Solution
	Discussion
	See Also

	17.6 Manage Files That Include Special Characters
	Problem
	Solution
	Discussion

	17.7 Program: Get Disk Usage Information
	Discussion
	See Also

	17.8 Determine the Current Location
	Problem
	Solution
	Discussion

	17.9 Monitor a File for Changes
	Problem
	Solution
	Discussion

	17.10 Program: Get the MD5 or SHA1 Hash of a File
	Discussion
	See Also

	17.11 Create a Directory
	Problem
	Solution
	Discussion

	17.12 Remove a File or Directory
	Problem
	Solution
	Discussion
	See Also

	17.13 Rename a File or Directory
	Problem
	Solution
	Discussion
	See Also

	17.14 Move a File or Directory
	Problem
	Solution
	Discussion
	See Also

	17.15 Get the ACL of a File or Directory
	Problem
	Solution
	Discussion
	See Also

	17.16 Set the ACL of a File or Directory
	Problem
	Solution
	Discussion
	See Also

	17.17 Program: Add Extended File Properties to Files
	Discussion
	See Also

	17.18 Program: Create a Filesystem Hard Link
	Discussion
	See Also

	17.19 Program: Create a ZIP Archive
	Discussion
	See Also

	The Windows Registry
	18.0 Introduction
	18.1 Navigate the Registry
	Problem
	Solution
	Discussion
	See Also

	18.2 View a Registry Key
	Problem
	Solution
	Discussion

	18.3 Modify or Remove a Registry Key Value
	Problem
	Solution
	Discussion

	18.4 Create a Registry Key Value
	Problem
	Solution
	Discussion

	18.5 Remove a Registry Key
	Problem
	Solution
	Discussion
	See Also

	18.6 Add a Site to an Internet Explorer Security Zone
	Problem
	Solution
	Discussion
	See Also

	18.7 Modify Internet Explorer Settings
	Problem
	Solution
	Discussion
	See Also

	18.8 Program: Search the Windows Registry
	Discussion
	See Also

	18.9 Get the ACL of a Registry Key
	Problem
	Solution
	Discussion
	See Also

	18.10 Set the ACL of a Registry Key
	Problem
	Solution
	Discussion
	See Also

	18.11 Work with the Registry of a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	18.12 Program: Get Registry Items from Remote Machines
	Discussion
	See Also

	18.13 Program: Get Properties of Remote Registry Keys
	Discussion
	See Also

	18.14 Program: Set Properties of Remote Registry Keys
	Discussion
	See Also

	18.15 Discover Registry Settings for Programs
	Problem
	Solution
	Discussion
	Launch and configure Process Monitor
	Prepare to manually set the configuration option
	Tell Process Monitor to begin capturing information
	Manually set the configuration option
	Tell Process Monitor to stop capturing information
	Review the capture logs for registry modification
	Automate these registry writes

	See Also

	Comparing Data
	19.0 Introduction
	19.1 Compare the Output of Two Commands
	Problem
	Solution
	Discussion

	19.2 Determine the Differences Between Two Files
	Problem
	Solution
	Discussion

	19.3 Verify Integrity of File Sets
	Problem
	Solution
	Discussion
	See Also

	Event Logs
	20.0 Introduction
	20.1 List All Event Logs
	Problem
	Solution
	Discussion
	See Also

	20.2 Get the Newest Entries from an Event Log
	Problem
	Solution
	Discussion
	See Also

	20.3 Find Event Log Entries with Specific Text
	Problem
	Solution
	Discussion
	See Also

	20.4 Retrieve a Specific Event Log Entry
	Problem
	Solution
	Discussion
	See Also

	20.5 Find Event Log Entries by Their Frequency
	Problem
	Solution
	Discussion
	See Also

	20.6 Back Up an Event Log
	Problem
	Solution
	Discussion

	20.7 Create or Remove an Event Log
	Problem
	Solution
	Discussion
	See Also

	20.8 Write to an Event Log
	Problem
	Solution
	Discussion
	See Also

	20.9 Access Event Logs of a Remote Machine
	Problem
	Solution
	Discussion
	See Also

	Processes
	21.0 Introduction
	21.1 List Currently Running Processes
	Problem
	Solution
	Discussion
	See Also

	21.2 Launch a Process
	Problem
	Solution
	Discussion
	See Also

	21.3 Stop a Process
	Problem
	Solution
	Discussion

	21.4 Program: Invoke a PowerShell Expression on a Remote Machine
	See Also

	System Services
	22.0 Introduction
	22.1 List All Running Services
	Problem
	Solution
	Discussion
	See Also

	22.2 Manage a Running Service
	Problem
	Solution
	Discussion
	See Also

	22.3 Access Services on a Remote Machine
	Problem
	Solution
	Discussion
	See Also

	Active Directory
	23.0 Introduction
	23.1 Test Active Directory Scripts on a Local Installation
	Problem
	Solution
	Discussion
	Install ADAM
	Create a test instance

	See Also

	23.2 Create an Organizational Unit
	Problem
	Solution
	Discussion
	See Also

	23.3 Get the Properties of an Organizational Unit
	Problem
	Solution
	Discussion

	23.4 Modify Properties of an Organizational Unit
	Problem
	Solution
	Discussion

	23.5 Get the Children of an Active Directory Container
	Problem
	Solution
	Discussion
	See Also

	23.6 Create a User Account
	Problem
	Solution
	Discussion
	See Also

	23.7 Program: Import Users in Bulk to Active Directory
	See Also

	23.8 Search for a User Account
	Problem
	Solution
	Discussion

	23.9 Get and List the Properties of a User Account
	Problem
	Solution
	Discussion

	23.10 Modify Properties of a User Account
	Problem
	Solution
	Discussion

	23.11 Create a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	23.12 Search for a Security or Distribution Group
	Problem
	Solution
	Discussion

	23.13 Get the Properties of a Group
	Problem
	Solution
	Discussion

	23.14 Find the Owner of a Group
	Problem
	Solution
	Discussion

	23.15 Modify Properties of a Security or Distribution Group
	Problem
	Solution
	Discussion

	23.16 Add a User to a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	23.17 Remove a User from a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	23.18 List a User’s Group Membership
	Problem
	Solution
	Discussion
	See Also

	23.19 List the Members of a Group
	Problem
	Solution
	Discussion
	See Also

	23.20 List the Users in an Organizational Unit
	Problem
	Solution
	Discussion
	See Also

	23.21 Search for a Computer Account
	Problem
	Solution
	Discussion

	23.22 Get and List the Properties of a Computer Account
	Problem
	Solution
	Discussion

	Enterprise Computer Management
	24.0 Introduction
	24.1 Program: List Logon or Logoff Scripts for a User
	See Also

	24.2 Program: List Startup or Shutdown Scripts for a Machine
	See Also

	24.3 Enable or Disable the Windows Firewall
	Problem
	Solution
	Discussion
	See Also

	24.4 Open or Close Ports in the Windows Firewall
	Problem
	Solution
	Discussion
	See Also

	24.5 Program: List All Installed Software
	See Also

	24.6 Uninstall an Application
	Problem
	Solution
	Discussion
	See Also

	24.7 Manage Scheduled Tasks on a Computer
	Problem
	Solution
	Discussion

	24.8 Retrieve Printer Information
	Problem
	Solution
	Discussion
	See Also

	24.9 Retrieve Printer Queue Statistics
	Problem
	Solution
	Discussion
	See Also

	24.10 Manage Printers and Print Queues
	Problem
	Solution
	Discussion
	See Also

	24.11 Determine Whether a Hotfix Is Installed
	Problem
	Solution
	Discussion
	See Also

	24.12 Program: Summarize System Information
	See Also

	24.13 Renew a DHCP Lease
	Problem
	Solution
	Discussion
	Use the Win32_NetworkAdapterConfiguration WMI class
	Run ipconfig on the remote computer

	See Also

	24.14 Assign a Static IP Address
	Problem
	Solution
	Discussion
	See Also

	24.15 List All IP Addresses for a Computer
	Problem
	Solution
	Discussion
	Use the Win32_NetworkAdapterConfiguration WMI class
	Run ipconfig on the remote computer

	See Also

	24.16 List Network Adapter Properties
	Problem
	Solution
	Discussion
	See Also

	Manage an Exchange 2007 Server
	25.0 Introduction
	25.1 Experiment with Exchange Management Shell
	Problem
	Solution
	Discussion

	25.2 Automate Wizard-Guided Tasks
	Problem
	Solution
	Discussion

	25.3 Manage Exchange Users
	Problem
	Solution
	Discussion

	25.4 Manage Mailboxes
	Problem
	Solution
	Discussion

	25.5 Manage Distribution Groups
	Problem
	Solution
	Discussion

	25.6 Manage Transport Rules
	Problem
	Solution
	Discussion

	25.7 Manage Outlook Web Access
	Problem
	Solution
	Discussion

	Manage an Operations Manager 2007 Server
	26.0 Introduction
	26.1 Experiment with the Command Shell
	Problem
	Solution
	Discussion

	26.2 Manage Operations Manager Agents
	Problem
	Solution
	Discussion

	26.3 Schedule a Maintenance Window
	Problem
	Solution
	Discussion

	26.4 Get, Install, and Uninstall Management Packs
	Problem
	Solution
	Discussion

	26.5 Enable or Disable Rules
	Problem
	Solution
	Discussion

	26.6 List and Start Tasks
	Problem
	Solution
	Discussion

	26.7 Manage Alerts
	Problem
	Solution
	Discussion

	Part V
	PowerShell Language and Environment
	Commands and Expressions
	Comments
	Variables
	Booleans
	Strings
	Literal and Expanding Strings
	Here Strings
	Escape Sequences

	Numbers
	Simple Assignment
	Administrative Numeric Constants
	Hexadecimal and Other Number Bases

	Arrays and Lists
	Array Definitions
	Array Access
	Array Slicing

	Hashtables (Associative Arrays)
	Hashtable Definitions
	Hashtable Access

	XML
	Simple Operators
	Arithmetic Operators
	Logical Operators
	Binary Operators
	Other Operators

	Comparison Operators
	Conditional Statements
	if, elseif, and else Statements
	switch Statements

	Looping Statements
	for Statement
	foreach Statement
	while Statement
	do … while Statement/do … until Statement
	Flow Control Statements
	break
	continue

	Working with the .NET Framework
	Static Methods
	Instance Methods
	Static Properties
	Instance Properties
	Learning About Types
	The Get-Member Cmdlet
	.NET framework documentation

	Type Shortcuts
	Creating Instances of Types
	Interacting with COM Objects
	Extending Types
	The Add-Member cmdlet
	Custom type extension files

	Writing Scripts, Reusing Functionality
	Writing Scripts
	Running Scripts
	Invoking
	Dot-sourcing

	Providing Input to Scripts
	Argument array
	Formal parameters
	Pipeline input
	Cmdlet keywords in scripts
	$MyInvocation automatic variable

	Retrieving Output from Scripts
	Pipeline output
	Return statement
	Exit statement

	Functions
	Script Blocks

	Managing Errors
	Nonterminating Errors
	Terminating Errors

	Formatting Output
	Custom formatting files

	Capturing Output
	Tracing and Debugging
	The Set-PsDebug Cmdlet
	The Trace-Command Cmdlet
	Verbose Cmdlet Output

	Common Customization Points
	Console Settings
	Adjust your window size
	Make text selection easier
	Use hotkeys to operate the shell more efficiently

	Profiles
	Prompts
	Tab Completion

	Regular Expression Reference
	PowerShell Automatic Variables
	Standard PowerShell Verbs
	Selected .NET Classes and Their Uses
	WMI Reference
	Selected COM Objects and Their Uses
	.NET String Formatting
	String Formatting Syntax
	Standard Numeric Format Strings
	Custom Numeric Format Strings

	.NET DateTime Formatting
	Custom DateTime Format Strings

	Index

